
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

NETWORKED HUMANOID ANIMATION DRIVEN BY

HUMAN VOICE USING EXTENSIBLE 3D (X3D), H-ANIM
AND JAVA SPEECH OPEN STANDARDS

by

Ozan Apaydın

March 2002

Thesis Advisor: Don Brutzman
Second Reader: Xiaoping Yun

This thesis done in cooperation with the MOVES Institute

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2002

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Networked Humanoid Animation Driven by
Human Voice Using Extensible 3D (X3D), H-Anim and Java Speech Open
Standards
6. AUTHOR Apaydın, Ozan

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT
Speech-recognition technology is beginning to be used in automobiles, telephones, personal digital

assistants (PDAs), medical records, e-commerce, text dictation and editing. Speech recognition can also be
integrated into Virtual Environments (VEs) to create responsive virtual entities. Like the mouse, keyboard, and the
trackball, Speech-recognition technology can enhance the control of a computer and improve communication.

Dramatically expanding interest in the Internet and VEs has been gated by limited interactivity with
human-avatar models. As more users begin interacting with avatars in VEs, designers are prompted to create more
realistic, humanlike avatars. This quest for realism needs to go beyond visual aspects to include speech-
recognition technology, which can greatly augment the realism of these avatars.

This thesis presents design and development of a Voice User Interface (VUI), which maps to a set of
behavioral motions for humanoid avatars using Extensible 3D (X3D) graphics, the Virtual Reality Modeling
Language (VRML), Humanoid Animation (H-Anim) Standard and Java Speech API. The VUI includes a suitable
speech-recognition component for application-command vocabularies. This thesis also demonstrates
interchangeability of both avatars and animation behaviors, and creates networked humanoid animation driven by
a human voice.

15. NUMBER OF
PAGES

102

14. SUBJECT TERMS Humanoid Animation (H-Anim) Specification, Avatars, X3D, X3D-
Edit, VRML, Java, Java Speech API, Java Speech Grammar Format, Web3D Consortium,
Voice User Interface (VUI).

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 i

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

Approved for public release; distribution is unlimited

 NETWORKED HUMANOID ANIMATION DRIVEN BY
 HUMAN VOICE USING EXTENSIBLE 3D (X3D), H-ANIM

 AND JAVA SPEECH OPEN STANDARDS

Ozan Apaydın

Lieutenant Junior Grade, Turkish Navy
Undergraduate (B. S.), Turkish Naval Academy, 1996

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2002

 Author:
 Ozan Apaydın

 Approved by:

 Don Brutzman
 Thesis Advisor

 Xiaoping Yun
 Second Reader

 Chris Eagle
 Chair, Department of Computer Science

 iii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

ABSTRACT

Speech-recognition technology is beginning to be used in automobiles,

telephones, personal digital assistants (PDAs), medical records, e-commerce, text

dictation and editing. Speech recognition can also be integrated into Virtual

Environments (VEs) to create responsive virtual entities. Like the mouse, keyboard, and

the trackball, Speech-recognition technology can enhance the control of a computer and

improve communication.

Dramatically expanding interest in the Internet and VEs has been gated by limited

interactivity with human-avatar models. As more users begin interacting with avatars in

VEs, designers are prompted to create more realistic, humanlike avatars. This quest for

realism needs to go beyond visual aspects to include speech-recognition technology,

which can greatly augment the realism of these avatars.

This thesis presents design and development of a Voice User Interface (VUI),

which maps to a set of behavioral motions for humanoid avatars using Extensible 3D

(X3D) graphics, the Virtual Reality Modeling Language (VRML), Humanoid Animation

(H-Anim) Standard and Java Speech API. The VUI includes a suitable speech-

recognition component for application-command vocabularies. This thesis also

demonstrates interchangeability of both avatars and animation behaviors, and creates

networked humanoid animation driven by a human voice.

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

TABLE OF CONTENTS

I. INTRODUCTION..1
A. VOICE-INTERFACES BACKGROUND...2
B. MOTIVATION ..3

1. Exemplar: Situation Reports Using Voice Recognition3
2. Entertainment ..4
3. Virtual Environments (VEs) ...4
4. E-Commerce...4
5. Gun Control..5

C. THESIS GOALS ..5
D. THESIS ORGANIZATION..5

II. RELATED WORK ..7
A. INTRODUCTION..7
B. VIRTUAL REALITY MODELING LANGUAGE (VRML)7
C. EXTENSIBLE 3D (X3D) GRAPHICS SPECIFICATION AND X3D-

EDIT AUTHORING TOOL ...8
D. KINEMATICS ...10

1. Forward Kinematics ..11
2. Inverse Kinematics...11

E. HUMANOID ANIMATION (H-ANIM) WORKING GROUP AND H-
ANIM SPECIFICATIONS ...12

F. HUMANOID MODELS...15
1. Nancy...15
2. Allen ..17
3. Box Man..18

G. INTEGRATING VIRTUAL HUMANS INTO NETWORKED
VURTUAL ENVIRONMENTS (Net-VEs)..19

H. SUMMARY ..20

III. SPEECH-RECOGNITION TECHNOLOGY...21
A. INTRODUCTION..21
B. WHAT MAKES EACH HUMAN VOICE DISTINCT?............................21
C. HISTORY ...21
D. BASIC TERMS AND CONCEPTS..23

1. Phonemes ..24
a. Voiced Phonemes ..24
b. Unvoiced Phonemes..24
c. Nasal Phonemes..24

2. Acoustic Model ...24
3. Utterance...25
4. Pronunciation ...25
5. Grammar ..25

 vii

6. Natural Language Commands..26
7. Training ..26
8. Speaker Dependence vs. Speaker Independence.............................27
9. Accuracy ...27

E. HOW IT WORKS..28
F. FACTORS AFFECTING THE ACCURACY ..29
G. SUMMARY ..31

IV. THE JAVA SPEECH API ..33
A. INTRODUCTION..33
B. OVERVIEW...33
C. CORE SPEECH TECHNOLOGIES ...34

1. Speech Synthesis...34
a. Speech-Synthesis Limitations ..36
b. Speech-Synthesis Assessment ...36

2. Speech Recognition ..37
a. Speech-Recognition Limitations...39
b. Speech-Recognition Assessment...41

3. Speech Engine ..42
D. JAVA SPEECH GRAMMAR FORMAT (JSGF)44

1. Definitions...45
a. Grammar Names and Package Names45
b. Rulenames ...45
c. Tokens..45
d. Comments ..46
e. Grammar Header ..46
f. Grammar Body..46

2. Rule Expansions ...46
3. Defining Complex Rules ..47

a. Composition and Sequences ...47
b. Grouping..48
c. Unary Operators..48

E. SUMMARY ..51

V. IMPLEMENTATION: BUILDING A NETWORKED,

 VOICE-ACTIVATED HUMANOID ANIMATION..53
A. INTRODUCTION..53
B. INITIAL LOW-LEVEL SYSTEM STRUCTURE.....................................53
C. SYSTEM COMPONENTS ...55

1. IBM VIAVOICE SDK...55
2. Human Models ...55
3. VRML-Java Communication ...55

D. DEVELOPMENT PROCESS...58
1. Building a Motion Library..58
2. Putting the Avatars and Behaviors Together: The

Interchangeable Actors ...59

 viii

3. Voice Enabling ...62
4. Networking ...65
5. Providing Available Commands and Feedback..............................67

E. ASSESSMENT OF THE FINAL PRODUCT...69
F. SUMMARY ..70

VI. CONCLUSION AND FUTURE WORK ...71
A. THESIS CONCLUSIONS...71

1. Integration of Speech-Recognition Technology to the
Networked Virtual Environments (Net-VEs)..................................71

2. Hybrid Interfaces (VUI + GUI) ..71
3. Interchangeable Humanoids and Animation Behaviors71

B. RECOMMENDATIONS FOR FUTURE WORK......................................72
1. Building Simulation of a Scenario or a Game.................................72
2. Improving Networking ..72
3. Expanding the Motion Library ..72
4. Composition of Animation Behaviors ..72
6. Support for Tactical Applications ..73

APPENDIX A – ACRONYMS ...75

APPENDIX B – 3D SCENES AND ANIMATION BEHAVIORS....................................77

APPENDIX C – CD DISTRIBUTION LIST ..79

LIST OF REFERENCES..81

INITIAL DISTRIBUTION LIST ...83

 ix

THIS PAGE INTENTIONALLY LEFT BLANK

 x

LIST OF FIGURES

Figure 2.1 HelloWorld.wrl Scene and Source [Brutzman, 2000]..8
Figure 2.2 Screen Shot of X3D-Edit While Editing HelloWorld.xml....................................9
Figure 2.3 H-Anim 1.1 Specification Joint, Segment and Site Hierarchy [H-Anim 1.1]......14
Figure 2.4 Nancy Demonstrating the Stand Behavior ...15
Figure 2.5 Nancy Demonstrating the Walk Behavior..16
Figure 2.6 Nancy Demonstrating the Run Behavior..16
Figure 2.7 Nancy Demonstrating the Jump Behavior..17
Figure 2.8 Allen; A Texture Mapped, Fully Articulated Avatar Converted from Laser

Scan Data Cloud [Dutton 2001]...18
Figure 2.9 Box Man; A Seamless Avatar ..19
Figure 3.1 Major Components in a Speech-Recognition System [Kemble 2001].................29
Figure 5.1 Initial Low-Level System Structure of a Voice-Activated Application...............54
Figure 5.2 Script Node Interface [Ames 97]..56
Figure 5.3 An Example of VRML-Java Communication [Brutzman 98]57
Figure 5.4 X3D-Edit Screen Snapshot of Run ExternProto...59
Figure 5.5 Static Routing vs. Dynamic Routing ..61
Figure 5.6 Screen Shot of Interchangeable Actors ..62
Figure 5.7 Flowchart of Networked Humanoid Animation...66
Figure 5.8 Networked, Voice-Enabled Humanoid Animation System Structure..................67
Figure 5.9 Voice Panel Showing Animation Phase Commands..68
Figure 5.10 Screen Shot of Voice-Activated Interchangeable Actors (Nancy and Walk

selected) ...69

 xi

THIS PAGE INTENTIONALLY LEFT BLANK

 xii

LIST OF TABLES

Table 1.1 User Interfaces Prediction Table [From Nielsen 99] ...2
Table 4.1 Written and Spoken Text Examples ..35
Table 4.2 Speech-Recognition Errors and Possible Causes [From JSAPI 1.0]41
Table 4.3 Grammar Examples [From JSGF] ...50
Table 5.1 Recognized Voice Commands during Welcome Phase and Animation Phase64

 xiii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiv

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to Dr. Don Brutzman, and Dr. Xiaoping

Yun, for their guidance, support and motivation throughout this study. I would like to

thank Cindy Ballreich, Allen Dutton and James Smith for allowing the use of their human

models.

I would like to thank to my wife (Filiz APAYDIN) for her unending patience and

full support. Without the loving support of my wife, this work could not have been

completed.

 xv

THIS PAGE INTENTIONALLY LEFT BLANK

 xvi

I. INTRODUCTION

The arrow which was shot,

The word which was spoken and

The life which passed never return.

- A Turkish Proverb

Two roads diverged in a yellow wood,

And sorry I could not travel both

And be one traveler, long I stood

And looked down one as far as I could

To where it bent in the undergrowth;

Then took the other, as just as fair,

And having perhaps the better claim,

Because it was grassy and wanted wear;

Though as for that the passing there

Had worn them really about the same,

And both that morning equally lay

In leaves no step had trodden black.

Oh, I kept the first for another day!

Yet knowing how way leads on to way,

I doubted if I should ever come back.

I shall be telling this with a sigh

Somewhere ages and ages hence:

Two roads diverged in a wood, and I—

I took the one less traveled by,

And that has made all the difference.

“The Road Not Taken” by Robert Frost (1920)

1

A. VOICE-INTERFACES BACKGROUND

In 1986, Dr. Jacob Nielsen asked a group of 57 IT professionals to predict what

would be the greatest changes in user interfaces by the year 2000. The top-five answers

were

Speech I/O 33%

Individualized interaction 19%

Increased use of graphics, mice, icons, etc. 16%

Dialogues developed by the users themselves 12%

Other new I/O-media than speech 12%

Table 1.1 User Interfaces Prediction Table [From Nielsen 99]

While Graphical User Interfaces (GUIs) have clearly been the winner since that

time, Voice User Interfaces (VUIs) certainly failed to reach the demand that IT

professionals expected. The key issue in interaction design and the main determinant of

usability is what the user “says” to the interface. Whether he or she provides the

command by speaking or by typing matters little to the user. Thus, having voice

interfaces will not necessarily free us from the most substantial part of user interface

design: determining the structure of the dialogue, what commands or features are

available, how the users are to specify what they want, and how the computer is to

communicate the feedback.

Voice interfaces have their greatest potential in the following cases:

• Users with various physical disabilities that prevent them from using a

mouse or keyboard. Such users are not able to drive an avatar in a Virtual

World.

2

• All users, with or without disabilities, whose hands and eyes are occupied

with other tasks. For example, while driving a car or while repairing a

complex piece of equipment.

• Users who do not have access to a keyboard and/or a monitor. For

instance, users accessing a system through a payphone.

B. MOTIVATION
This thesis provides a step in a different direction to support virtual worlds by

offering another user-control option other than mouse, keyboard, and trackball. Five

examples of possible uses of VUIs are examined: SALT Reports, entertainment, virtual

environments, e-commerce and gun control. Specific details regarding these uses follow:

1. Exemplar: Situation Reports Using Voice Recognition
The U.S. Army is exploring the use of speech-recognition software, which is seen

increasingly in the commercial sector, as a potentially useful tool in future combat

systems. The Army plans to integrate tactical voice activation into Version Four of Force

XXI Battle Command, Brigade and Below software (FBCB2). FBCB2 is a digital

command and control system, mounted on tactical vehicles and other platforms to

provide battle command and situational awareness information to the war fighter, from

brigade level down to the soldier platform level. FBCB2 is the central system of the

future Army Battle Command Systems, a collection of systems that provides the

capability to the war fighter collectively known as "network-centric warfare." [Seffers

2001]

The operational requirements for tactical voice activation in FBCB2 call for a

voice-activated means to perform key operations. This would include situation and SALT

(Size, Activity, Location, Time) reports, in which soldiers report the size, activity,

location and time of enemy forces spotted on the battlefield. For example, the soldier

spotting an enemy armored personnel carrier might tell the computer: “SALT report.”

The computer prepares to receive information, and the soldier might say “Enemy

equipment type: APC. Quantity: Six. Enemy Activity: Attacking.” [Seffers 2001]. The
3

computer converts such information into a format for transmission via pre-established or

directed distribution list that might include the unit commander, intelligence officers and

artillery forces.

2. Entertainment

VUIs may be integrated into video games to control the present entities. Imagine a

tactical war game in which the troops can be directed by saying, “Go to the end of the

street!” or “Open fire!” Imagine a game that you could give tactical orders to the

commanders of your military forces with your own voice. Using natural language

processing (NLP), the virtual commanders might understand your commands and carry

out the missions. Examples in this area can be expanded easily.

3. Virtual Environments (VEs)
VUIs are an appealing alternative while interacting with Virtual Environments

(VEs). For example, intelligent avatars might replace actual bridge personnel in a

warship bridge simulation. These avatars might understand voice commands, fulfill them

and report via their own speech-recognition capabilities. Such an approach contributes to

the simulation in two ways. The first is that the simulation environment becomes more

realistic. The second is that the simulation becomes trainee independent. In other words,

no bridge personnel are needed to run the simulation. Additionally, inserting intelligent

avatars to the VEs can provide a range of possibility from non-person-collaborative

simulation to many-person-collaborative simulation.

4. E-Commerce

E-Commerce is growing rapidly on the Internet, and speech-recognition

technology can be integrated into advertising. An avatar, which can speak by

synthesizing text from a database into speech, can present the products of an e-commerce

company. This can engage e-customers both visually and aurally.

4

5. Gun Control

VUIs can also be used in gun-control systems. For example, if the fire controls of

a warship or a tank gun have a speech-recognition capability, the controller can tell the

gun to slew right and fire. Then a diagnosis on the gun’s condition may be asked.

Obviously, recognition accuracy becomes a critical requirement.

C. THESIS GOALS
The overall goals of this thesis are to

• Perform a background search on speech-recognition technology to find a

suitable component for this project,

• Develop a VUI (Voice User Interface) that maps between human voice

commands and a set of animations of the avatar, thus providing voice

access to an animation application,

• Build a motion library to animate available humanoids,

• Demonstrate interchangeability of the behaviors and the humanoids,

• Create an integrated humanoid animation application driven by a human

voice.

D. THESIS ORGANIZATION

Six chapters comprise this research:

• Chapter I–Introduction: Identifies the purpose and motivation behind

conducting this research. Establishes the goals for the thesis.

• Chapter II–Related Work: Provides information on humanoid models, and

the previous research conducted in this area.

• Chapter III–Speech-Recognition Technology: Introduces background

information and basic concepts of Speech Recognition.

5

• Chapter IV–Java Speech API: Provides an overview for the Java Speech

API and describes the speech technologies that are supported through Java

Speech API.

• Chapter V–Implementation: Building Voice-Enabled Humanoid

Animation: Describes the general system structure, software components

and implementation process.

• Chapter VI–Conclusion and Recommendations Future Work: Explains the

conclusions and provides recommendations regarding possible future

work.

6

II. RELATED WORK

A. INTRODUCTION
This chapter provides an overview to Virtual Reality Modeling Language

(VRML), Extensible 3D (X3D) and Kinematics. It further examines Humanoid

Animation Working Group, Humanoid Animation Specifications and Humanoid Models.

B. VIRTUAL REALITY MODELING LANGUAGE (VRML)
The Virtual Reality Modeling Language (VRML) is a file format for describing

interactive 3D objects and worlds. VRML is designed to be used on the Internet,

intranets, and local client systems. VRML is also intended to be a universal interchange

format for integrated 3D graphics and multimedia. Moreover VRML may be used in a

variety of application areas such as engineering and scientific visualization, multimedia

presentations, entertainment and educational titles, web pages and shared virtual worlds.

VRML is capable of representing static and animated dynamic 3D and multimedia

objects with hyperlinks to other media such as text, sounds movies and images. The

VRML Specification is an International Standards Organization (ISO) specification

(ISO/IEC 14772-1:1997). VRML also provides a large number of 3D graphics nodes,

which are organized in a hierarchy within a file, to compose a directed acyclic graph

(DAG) called a scene graph [Brutzman, 1998].

VRML file extension is .wrl or .wrz (if the file is gzip-compressed). A VRML

file can contain four main types of components:

• The VRML Header,

• Prototypes,

• Shapes (geometry and appearance), Interpolators, Sensors and Scripts,

• ROUTEs. [Ames, 1997]

The only required element that VRML file must contain is the VRML header.

Prototypes (PROTOs) allow a user to author new 3D graphic node types and can be

formed into libraries and reused by referencing them inside an external prototype
7

(EXTERNPROTO). Shapes encompass both object geometry and appearance. Sensors

allow users to interact with the scene. Script nodes provide an interface between the

VRML scene and a program script; usually written in Java or JavaScript (i.e.

ECMAScript). Script nodes are very important in creating complex actions and

animations. Finally, routes are statements, which define connections between named

nodes and fields by allowing events to be passed from source to target.

 Figure 2.1 HelloWorld.wrl Scen

 http://www.web3d.org/TaskGroups/x3d/t

C. EXTENSIBLE 3D (X3D) GRAPHIC
AUTHORING TOOL

The X3D Graphics Working Group is d

generation Extensible 3D (X3D) Graphics spec

8
VRML V2.0 utf8
Group {
 children [
 Viewpoint {
 description "hello, wor

0 1.57
ld!"

 orientation 0 1
 position 6 -1 0
 }
 NavigationInfo {
 type ["EXAMINE" "ANY"]
 }
 Shape {
 geometry DEF S Sphere {
 }
 appearance Appearance {
 texture ImageTexture {
 url ["earth-topo.png"
"http://www.web3D.org/TaskGroups/x3d/tran

slation/examples/earth-topo-small.gif"]
 }

}

 }
 Transform {
 rotation 0 1 0 1.57
 translation 0 -2 1.25
 children [
 Shape {
 geometry Text {
 string ["Hello" "world!"]
 }
 appearance Appearance {
 material Material {
 diffuseColor 0.1 0.5 1
 }
 }
 }

]

}

]
}
e and Source [Brutzman, 2000]
ranslation/examples/HelloWorld.x3d, .wrl

S SPECIFICATION AND X3D-EDIT

esigning and implementing the next-

ification. The X3D is scene graph

http://www.web3d.org/TaskGroups/x3d/translation/examples/HelloWorld.x3d
http://www.web3d.org/TaskGroups/x3d/translation/examples/HelloWorld.wrl

architecture and encoding that improves on the Virtual Reality Modeling Language

(VRML) international standard (VRML 97, ISO/IEC 14772-1:1997). X3D uses the

Extensible Markup Language (XML) to express the geometry and behavior capabilities

of VRML. X3D is thus a backward-compatible XML tagset for describing the VRML

200x standard for Web-capable 3D content. Such content is not static but dynamic,

driven by a rich set of interpolators, sensor nodes, scripts, and behaviors. [Brutzman,

Blais, Horner, Nicklaus 2001]

X3D-Edit is a graphics file editor for Extensible 3D (X3D) that enables simple

error-free editing, authoring and validation of X3D or VRML scene-graph files. Context-

sensitive tooltips provide concise summaries of each VRML node and attribute. These

tooltips simplify authoring and improve understanding for both novice and expert users.

X3D-Edit is being used to develop and test the Extensible 3D (X3D) tagset for the next-

generation Virtual Reality Modeling Language (VRML 200x).

X3D-Edit uses the XML tagset defined by the X3D Compact Document Type

Definition (DTD) in combination with Sun's Java, IBM's Xeena XML editor, and an

editor profile configuration file.

 Figure 2.2 Screen Shot of X3D-Edit While Editing HelloWorld.xml

9

D. KINEMATICS

Kinematics is the study of motion, in particular of the relationships of the various

quantities of motion to one another. Specifically, kinematics deals strictly with position

and orientation (i.e. posture). In contrast, dynamics considers forces and moments in

combination with kinematics. At first glance, kinematics may seem like 17th century

physics, but in fact it is the formal basis of almost all translation/scaling/rotating motion.

Kinematics can provide a model of the human skeleton as well as of a steam engine. As

such, kinematics is a fundamental science for the computer animator because it studies

and catalogs knowledge about motion–the continuous change of place or position.

[Pocock, Rosebush 2002]

The most basic kinematic element for articulated or rigid body kinematics is the

link, which is a rigid moving part. Links are joined into linkages by the use of joints. The

simplest kind of linkage is the kinematic pair, which consists of two links organized so

that one is constrained to rotate about a pivoting joint, or to move back and forth inside a

slide. The kinematic pair is the nucleus of kinematics. Connecting kinematic pairs with

joints produces a kinematic chain, also called articulated chain or simply chain. Many

computer animation programs incorporate the use of these fully jointed kinematic chains.

Moving one link will result in the flexible movement of all the attached links.

The endpoints of the different links in the kinematic chain have special names.

The proximal end is the fixed end of the first link in the chain. The root is a point at the

proximal end that is the point of articulation of the link; thus, the root is a joint. The distal

end is the end of the final link in the chain. The end effector (or just effector) is the point

at the distal end that can be used to move the link and chain.

A skeleton, also known as an armature, is a hierarchy of articulated chains. A link

in the hierarchy is said to be a parent link if there is a link or structure of links below it in

the hierarchy. Similarly, a link is said to be the child of the link just above itself in the

hierarchy. Each child can be transformed independently of other nodes in the hierarchy.

Transformations applied to a parent propagate down to all of its children. Each level of

the hierarchy has its own coordinate system and its own local origin. Objects rotate

around their own center. A branch rotates around its parent’s center. In mathematical

10

terms, the kinematic chain is represented as a concatenated ordered sequence of

translation, scale, and rotation, most typically calculated by using matrix algebra.

A kinematic model is a kinematic chain together with the geometry that surrounds

the chain; the chain defines the relationship between the parts. There are two basic types

of kinematic models: those that incorporate a rigid geometry and those that incorporate a

flexible geometry. This flexible geometry, sometimes referred to as a skin or envelope,

moves and deforms as the underlying chain moves.

1. Forward Kinematics

One of the most elementary ways to animate chains is to use forward kinematics,

a technique whereby the animator specifies each joint angle for each pivot in an

articulated chain or hierarchy, starting from the root of the chain and working downward.

That is, the transformations being applied to the chain are applied to the root first and

then work their way down to the distal end. The animator or computer animation program

needs to determine all of the angles and positions. Typically, the specification of angles is

not done for every frame, but only for the extreme positions, or key frames, with the

computer used to calculate the in-between frames.

 The advantage of this method is that the animator has full control of all the joints.

The disadvantage is that there are a great many degrees of freedom to control, scripting is

tedious, and if the angles are not controlled masterfully, the resulting animated action will

not be convincing.

2. Inverse Kinematics
Since the animator has to specify all of the positions throughout the animation,

forward kinematics becomes difficult to use once the models go beyond simple objects.

Inverse kinematics is a method that allows the animator to specify the position

and orientation of the end effector. The animation program calculates all of the

intermediate joint angles and then positions all of the individual pieces of the chain. The

position of the end effector is specified in terms of a goal (for example, where the hand

needs to be) and hence is also called goal-directed animation. Inverse kinematics
11

concerns specifying a goal, and then computing automatically and correctly how to

achieve a goal in a physically valid manner. The inverse kinematics approach, originated

in the field of robotics, has the advantage of fixing positions and/or accelerations in

advance, and letting the computer calculate the intermediate values.

It is noteworthy that no single solution to an inverse kinematics problem exists;

there may be many different ways to position the intermediate joints to achieve the same

goal position of the end effector. As long as a solution obeys the basic constraints of the

mechanical system, it is a valid solution. The result is an envelope of permissible

solutions. [Pocock, Rosebush 2002]

E. HUMANOID ANIMATION (H-ANIM) WORKING GROUP AND H-ANIM

SPECIFICATIONS

H-Anim Working Group exists for the sole purpose of creating a standard

representation for humanoids. H-Anim is a working group of the Web3D Consortium.

H-Anim’s aim is to specify a way of defining interchangeable humanoids and

animations. Animations include limb movements, facial expressions and lip

synchronization with sound. One of the most important goals is to allow people to author

humanoids and animations independently.

H-Anim Working Group published three specifications by the time this thesis was

being written:

• H-Anim 1.0 Specification, http://h-anim.org/Specifications/H-Anim1.0/

• H-Anim 1.1 Specification, http://h-anim.org/Specifications/H-Anim1.1/

• H-Anim 200x Specification (Draft),

 http://www.h-anim.org/Specifications/H-Anim2001/

The most important difference between the H-Anim 200x specification and the

others is that it will be independent of VRML97. However, H-Anim Working Group

decided to describe the nodes using syntax familiar to the H-Anim community. In this

12

http://h-anim.org/Specifications/H-Anim1.0/
http://h-anim.org/Specifications/H-Anim1.1/
http://www.h-anim.org/Specifications/H-Anim2001/

manner everyone can examine the changes without being confused by the descriptions

used. An overview of H-Anim 2001 Specification follows.

The human body consists of a number of segments (such as the forearm, hand and

foot), which are connected to each other by joints (such as the elbow, wrist and ankle). In

order for an application to animate a humanoid, it must obtain access to the joints and

alter the joint angles. The application may also need to retrieve information about such

elements as joint limits and segment masses.

A mesh of polygons typically defines each segment of the body, and an

application may need to alter the locations of the vertices in that mesh. The application

may also need to obtain information about which vertices are to be treated as a group for

the purpose of deformation.

An H-Anim file contains a set of joint nodes that are arranged to form a hierarchy.

Each joint node can contain other joint nodes and may also contain a segment node,

which describes the body part associated with that joint. Each segment can also have a

number of site nodes, which define locations relative to the segment. Sites can be used

for attaching clothing and jewelry and can be used as end-effectors for inverse kinematics

applications. They can also be used to define eye points and viewpoint locations.

Each Segment node can have a number of displacer nodes that specify which

vertices within the segment correspond to a particular feature or configuration of vertices.

The file also contains a single humanoid node, which stores human-readable data

about the humanoid such as author and copyright information. That node also stores

references to all the joint, segment and site nodes, and serves as a "wrapper" for the

humanoid. In addition, it provides a top-level Transform for positioning the humanoid in

its environment. [H-Anim 2001]

The H-Anim Specification defines some abstractions for segments and joints to

allow a human body to be described in a structured and standardized way. An H-Anim

body is typically built as a series of nested joint nodes, each of which may have a

segment associated with it. The Specification also provides naming conventions for joints

and their associated segments. (see Figure 2.3)

13

Figure 2.3 H-Anim 1.1 Specification Joint, Segment and Site Hierarchy [H-Anim 1.1]

14

F. HUMANOID MODELS

1. Nancy

Nancy is the canonical exemplar of H-Anim 1.1 Specification. The model was

created by Cindy Ballreich, who grants permission for the use of Nancy for this project.

Nancy.wrl consists of 2082 polygons and contains 17 joints, 15 segments and 4

viewpoints. It also contains a motion library with four behaviors: Stand, Walk, Run,

Jump. Clicking on the appropriate text, which a Touch Sensor is attached, can activate

these behaviors. (see Figures 2.4 – 2.7)

 Figure 2.4 Nancy Demonstrating the Stand Behavior

15

 Figure 2.5 Nancy Demonstrating the Walk Behavior

 Figure 2.6 Nancy Demonstrating the Run Behavior

16

 Figure 2.7 Nancy Demonstrating the Jump Behavior

2. Allen

Allen, created by Allen Dutton, consists of 10,000 polygons. It was initially a

laser scan data cloud. At Naval Postgraduate School (NPS), its author converted it to a

fully articulated, texture-mapped avatar that is capable of scripted movement [Dutton

2001]. The following steps were taken for this conversion:

• Polygon Reduction,

• Translating between File Formats (.ply to .wrl),

• Segmenting,

• Constructing the Avatar. Nancy was the foundation for the Allen.

17

Figure 2.8 Allen; A Texture Mapped, Fully Articulated Avatar Converted from Laser
Scan Data Cloud [Dutton 2001]

3. Box Man
Box Man, created by James Smith, is a seamless VRML Human demonstrating

the H-Anim 2001 Specification. Seamless objects are the collection of polygons that

consist of vertices, which do not lose their integrity even if a transformation is applied. A

deformation engine provides this feature. Another significant difference is that Box Man

has a skin, which Nancy and Allen do not have.

18

Figure 2.9 Box Man; A Seamless Avatar

G. INTEGRATING VIRTUAL HUMANS INTO NETWORKED VURTUAL
ENVIRONMENTS (Net-VEs)

Virtual humans are virtual organisms, which bring dynamism to virtual worlds.

Providing an interface to aggregate and control articulated humans in a networked virtual

environment (Net-VE) is a major issue. Tom Miller achieves this objective in his thesis

[Miller 2000] by addressing the following areas:

• Virtual human avatars must have an articulated joint structure and at least a

limited motion library in order to model realistic movement.

19

• A set of rule-based physical and logical behaviors for groups of humans must

be developed and implemented in order to execute basic tactical formations

and activities.

• Human entities must be able to aggregate into a group or mount other human

entities (such as vehicles) and then separate back to individual entity control.

Otherwise, the high-precision relative motion needed for group activities is

not possible across network delays or in geo-referenced locations.

H. SUMMARY
 This chapter discussed the Virtual Reality Modeling Language (VRML),

Extensible 3D (X3D) and Kinematics. In addition, Humanoid Animation Working

Group, Humanoid Animation Specifications and Humanoid Models were examined.

20

III. SPEECH-RECOGNITION TECHNOLOGY

A. INTRODUCTION
This chapter introduces the history, basic concepts of speech recognition and

explains how the speech-recognition process works. Factors affecting speech-recognition

accuracy follow.

B. WHAT MAKES EACH HUMAN VOICE DISTINCT?
 This question is a significant one, if the amount of variations in a human voice is

considered. Otolaryngology gives a physiological answer:

The vocal cords provide the sound source for speech. The length of the vocal

cords determines the pitch of the voice; longer vocal cords produce lower-pitched (more

masculine) tones. However, the vocal cords contribute only partially to the overall voice.

In fact, outside the human body, the cords can only make a very unpleasant buzzing

sound. Another important factor is the resonating chamber of the throat and nasal

cavities. These cavities uniquely shape the sound of a person's voice for each individual,

molding the buzzing sound from the larynx into a sound with character. Lastly, the

muscles in the tongue, palate and lips provide the articulation to the voice. These

articulator muscles determine elements, such as accent, lisp, or other distinctive speech

patterns. When these factors are combined, a considerable amount of variation may

influence a person's voice characteristics. [Simpson 99]

C. HISTORY
Interestingly, a toy company logged the first success story in the field of speech

recognition many decades before major research in the area was considered. “Radio

Rex” was a celluloid dog that responded to its spoken name. Lacking the computation

power that drives recognition devices today, Radio Rex was a simple electromechanical

device. [Maurer]

The dog was held within its house by an electromagnet. As current flowed

through a circuit bridge, the magnet was energized. The bridge was sensitive to 500 cps

21

of acoustic energy. The energy of the vowel sound of the word “Rex” caused the bridge

to vibrate, breaking the electrical circuit, and allowing a spring to push Rex out of his

house. While Radio Rex was not a commercial success, the toy was no doubt a pioneer in

speech recognition.

The U.S. Department of Defense (D.O.D.) sponsored the first academic pursuits

in speech recognition in the late 1940s. In an attempt to expedite the processing of

intercepted Russian messages, the U.S. was eager to develop an automatic language

translator. The first and most difficult step required to produce such a system was

creating the ability to recognize speech. The project was a failure; typical results

produced faulty translations, such as “the spirit is willing but the flesh is weak” into

Russian and back into English as “the vodka is strong but the meat is disgusting.”

However, the D.O.D. recognized how much research was needed to achieve even

a glimpse of success in speech recognition. As a result, the government funded the

Speech Understanding Research (SUR) program at Carnegie Mellon University, MIT,

and some select commercial institutions. The agency that funded the research later

became known as the Defense Advanced Research Project Agency (DARPA).

In 1952, as the government-funded research began to gain momentum, Bell

Laboratories developed an automatic speech recognition system that successfully

identified the digits 0 to 9 when spoken over the telephone. Major developments at MIT

followed. In 1959, a system successfully identified vowel sounds with 93% accuracy.

Then seven years later, a system with a vocabulary of 50 words was successfully tested.

In the early 1970s, the SUR program yielded its first substantial results. The HARPY

system, at Carnegie Mellon University, could recognize complete sentences that

consisted of a limited range of syntax. Nevertheless, the computing power it required was

prodigious; it took 50 contemporary computers to process a recognition channel.

At this point, at least three key obstacles impeded a commercially viable product:

computing power, the ability to recognize speech from any person (not just the particular

voices the system has been designed around), and a continuity-of-speech capability (so

that the person did…not…have…to…speak…with…constant…pauses…like…this).

22

Nonetheless, the successes of the 1950s and 1960s gained the attention of more

and more commercial entities, and the most important goal of speech recognition became

imaginable: Continuous Speech Recognition.

Companies devoted to commercializing speech recognition became more

noticeable as the technology became more viable. Speechworks and Dragon Systems

were two of the major companies that achieved vast reductions in the amount of

processing power required by speech-recognition systems. This reduction in the need for

processing power quickened the arrival of the crucial point at which the available

processing power in computing systems equaled the processing power required by

speech-recognition software. In addition, just as the processing power requirements were

plummeting, so were the recognition-error rates. The combination of these effects set the

stage for widespread commercial usage.

In 1996, Charles Schwab was the first major consumer company to implement a

speech-recognition system for its vital customer interface. The system was called Voice

Broker, and its success led to speech recognition being adopted by the likes of Sears,

Roebuck and Co., United Parcel Service of America Inc., and E*Trade Securities.

[NetByTel]

Technological innovations continued and in 1997, Dragon Systems introduced

Naturally Speaking the first continuous speech dictation software available. In 2000,

TellMe introduced the first global voice portal and later that year NetByTel launched the

first voice enabler, which allowed users to fill out a web-based data form over the phone.

[NetByTel] [Maurer]

D. BASIC TERMS AND CONCEPTS
Speech-recognition technology allows the user to provide input to an application

with his or her own voice, just like typing on a keyboard or clicking a mouse. The

software component, which performs the speech-recognition process, is called the

speech-recognition engine. The speech-recognition engine processes the spoken input

and translates it into text, which an application understands. If the application handles the

recognized text simply as text and dictates the input, then it is considered a dictation

23

application. An example of a dictation application is that the user says, “Open a new

document,” and the application returns the text, “Open a new document.” If the

application interprets the result of the recognition process as a command, then it is a

command and control application. For instance, the user says, “Open a new document,”

and the application opens a new document within a word processor program. Following

are the basic terms and concepts that are fundamental to speech recognition.

1. Phonemes
Phonemes are the smallest sound units of which words are composed. A speech-

recognition system stores a list of what phonemes sound like. That is, a table of relative

formant positions is kept by the software, and the frequencies extracted from one’s

speech are compared to this table. Phonemes can be placed in categories depending on

the distinctive features they share. These categories are

a. Voiced Phonemes
Voiced phonemes consist of vowels and consonants, which use the vocal

chords. i.e. “y,” “g” and “ng.”

b. Unvoiced Phonemes
Unvoiced phonemes consist of consonants, which don’t involve the vocal

chords. i.e. “s” and “sh.”

c. Nasal Phonemes
Nasal phonemes consist of consonants such as “n” and “m,” which are

produced in the nasal passages. [Kavanagh 95]

2. Acoustic Model
The acoustic model captures the acoustic properties of speech and provides the

probability of the observed acoustic signal when given a hypothesized word sequence.

The acoustic model can trace the differences in speech signals and then compare the

features of these signals with known features of a language’s basic sounds in order to

determine the spoken words. However, tracing the difference is not that simple, since a

great deal of variety between any two acoustic signals is caused by factors such as

different speakers, different emotions, and different speech rates.
24

3. Utterance
An utterance is any stream of speech between two periods of silence. Utterances

are sent to the speech engine to be processed. Since silence delineates the start and end of

an utterance, it is almost as important as what is spoken. When the speech-recognition

engine detects audio input, the beginning of an utterance is signaled. Similarly, when the

engine detects a certain amount of silence following the audio, the end of the utterance

occurs. If the user does not say anything, the engine returns a silence timeout, which

indicates that no speech was detected within the expected timeframe. In this case, the

application may take an appropriate action, such as reprompting the user for input. An

utterance can be a single word, or it can contain multiple words (a phrase or sentence).

Whether these words and phrases are valid at a particular point in a dialog is determined

by active grammars. If the user pauses too long between the words of a phrase, the end of

an utterance can be detected too soon, and the engine will only process a partial phrase.

4. Pronunciation
 The speech-recognition engine uses a great variety of disparate data, statistical

models, and algorithms to convert spoken into text. One piece of information that the

speech engine uses to process a word is its pronunciation, which represents what the

speech engine predicts a word will sound like. Words can have multiple pronunciations.

The application developer may want to provide multiple pronunciations for certain words

and phrases to allow variations in the ways user may speak them.

5. Grammar
The allowed order of words and phrases that users can say to the speech-

recognition application must be specified. These words and phrases are defined to the

speech-recognition engine and are used in the recognition process. A grammar uses a

particular syntax, or set of rules to define the words and phrases that can be recognized

by the engine. A grammar can be as simple as a list of words, or it can be flexible enough

to allow such variability in what can be said that it approaches natural language

capability. Grammars define the domain, or context, within which the recognition engine
25

works. The engine compares the current utterance against the words and phrases in the

active grammars. If the user says something that is not in the grammar, the speech engine

will not be able to decipher it correctly. The design of application grammars needs to be

thought out carefully. They can be as restrictive or as flexible as the user and application

need them to be. Since there are tradeoffs between recognition speed (response time) and

accuracy versus the size of the grammar(s), an application designer may experiment with

different grammar designs to validate one that best matches the users’ requirements and

expectations.

6. Natural Language Commands

Natural Language Commands are aimed at providing a more intuitive way of

using a speech-recognition application. Rather than having to speak commands by

reading from menus, the user can informally state the desired actions and the software

intelligently interprets the instructions to perform the task. This technology is still in its

infancy and is limited in what applications and actions it can support, but it holds great

promise. [PCMagazine 99]

An unrestricted natural language interface is generally considered an enticing

prospect because, if it could be implemented, it would offer many advantages: it would

be easy to learn and easy to remember, because its structure and vocabulary are already

familiar to the user; because the same language could be used for many application, there

might be fewer transfer problems between applications; they are particularly powerful

because of the multitude of ways in which to accomplish an action; and they also allow

considerable flexibility in executing the steps of a task. [Long 94]

7. Training
Most of the recognition applications require an initial training and enrollment

process in order to teach the software to recognize the user’s voice. A voice profile that is

unique to that individual is then produced. This procedure also helps the user learn how

to speak to a computer. After the initial training, the program’s accuracy will improve as

the user dictates by correcting the mistakes in transcription. Another way the program

26

improves in accuracy is by analyzing existing documents for new words and for the

user’s syntax. These three steps–initial training, making corrections, and vocabulary

analysis–are common for almost all dictation applications. [Fulton 2000]

8. Speaker Dependence vs. Speaker Independence
Speaker dependence describes the degree to which a speech-recognition system

requires knowledge of a speaker’s individual voice characteristics to process speech. The

speech-recognition engine can learn how the user speaks words and phrases; it can be

trained to recognize the user’s voice. Speech-recognition systems that require a user to

train the system to his or her voice are known as speaker-dependent systems. Most

dictation applications are speaker dependent. Because they operate on very large

vocabularies, dictation applications perform much better when the speaker has spent

several hours to train the system to his or her voice.

Speech-recognition systems that do not require a user to train the system are

known as speaker-independent systems. These systems successfully process the speech

of many different users without having to understand each individual’s voice

characteristics.

9. Accuracy
The most widely used measurement to define the performance of a speech-

recognition system is accuracy, typically a quantitative measurement that can be

calculated in several ways. The most important measurement of accuracy is whether the

desired end result occurred, which is useful in validating application design. For example,

if the user says “yes,” the engine returns “yes,” and the “yes” action is executed, then

desired end result is clearly achieved. Nevertheless a condition in which the text returned

by the engine does not exactly match the utterance may occur. For instance, what if the

user says “nope,” the engine returns “no,” yet the “nope” action is executed? Should this

dialog be considered successful? This example is successfully accurate, because mostly

due to choice of grammar the desired end result is achieved.

27

Another measurement of recognition accuracy is whether the engine recognized

the utterance exactly as spoken. This measure of recognition accuracy is expressed as a

percentage and represents the number of utterances recognized correctly out of the total

number of utterances spoken. Using the previous example, if the engine returns “no”

when the user says “nope,” this is considered a recognition error. Based on the accuracy

measurement, the grammar may be analyzed to improve accuracy.

E. HOW IT WORKS
Basic terms and concepts of speech-recognition technology are presented in

previous sections. These terms are now linked to show how the speech-recognition

process works.

A microphone converts the user’s voice into an analog signal and feeds it to the

PC’s sound card. An analog-to-digital converter takes the signal and converts it to a

stream of digital data. The software receives the digital data and processes it. The

acoustic model removes noise and unneeded information such as changes in volume.

Using mathematical calculations, the model reduces the data to a spectrum of frequencies

(the pitches of the sound), analyzes the data, and converts the words into digital

representations of phonemes. The speech-recognition engine has a rather complex task to

handle, namely taking raw audio input and translating it to a recognized text, which an

application understands. Once the data is in the proper format, the engine searches for the

best match. The engine does this by considering the words and phrases it recognizes (i.e.

the active grammars), along with its knowledge of the environment in which it is

operating. The knowledge of the environment is provided in the form of an acoustic

model. Once the engine identifies the most likely match for what was said, it returns a

result as a string. Most speech engines try very hard to find a match and are usually very

forgiving. But it is important to note that the engine always returns its best guess.

The result, which the recognition engine returns, can be either of two states:

acceptance or rejection. The engine flags acceptance or rejection with each processed

utterance. An accepted utterance is one in which the engine returns recognized text.

Sometimes the match may be poor because the user said something that the application

28

cannot accept, or the user spoke indistinctly. In these cases, the speech engine returns the

closest match, which might be incorrect. Some engines also return a confidence score

along with the text to indicate the likelihood that the returned text is correct. Figure 3.1

illustrates the major components of speech recognition.

SPEECH RECOGNITION

ACOUSTIC
MODEL

F.

cat

AUDIO INPUT
 ENGINE

GRAMMAR(S)

 Figure 3.1 Major Components in a Speech-Recognition System [

FACTORS AFFECTING THE ACCURACY
Many factors affect speech-recognition accuracy. These factors c

egorized as:

• Environment: Background noise can influence the recogn

The human auditory system can reduce the effect of noise

perception. Speech-recognition technology cannot block o

noise initially, but it can remove it from the data layer. Sy

29
RECOGNIZED TEXT
Kemble 2001]

an be

ition process.

 on speech

ut unwanted

stems can

perform with very low error rates as long as the environmental conditions

remain controlled, constant and quiet. Performance degrades when noise is

added to the scenario or when the environment differs from the training

session used to make the reference templates.

• Hardware: Computers set up to use speech-recognition software must be

on the leading edge rather than the trailing edge. They must be fast and

have expansive memory (cache and RAM). Sound cards and microphone

quality are further factors.

• Speaker / User: The clarity and naturalness of the speaker’s annunciation

significantly affects the accuracy. Users with accents or atypical voices

may result in lower accuracy. Single-user input is easier to recognize than

speech from multiple speakers because most representations of speech are

sensitive to characteristics of the speaker. If there is variety of speakers,

the pattern-matching templates and models for one person might not

perform as well for some individuals as for others. To improve accuracy,

training is essential in many speech-recognition applications. These

applications require the user to train with the system so the program

becomes accustomed to the user’s unique voice characteristics.

• Vocabulary Size: A vocabulary is the collection of words that the pattern-

matching algorithm knows and compares the input against. Larger

vocabularies are more likely to contain ambiguous words than smaller

vocabularies. Ambiguous words are those with similar pattern-matching

templates. These words can confuse the recognition algorithms. Also,

when the vocabulary size increases, searching the speech-model database

takes longer, thus software and application designers have to weigh faster

response time against higher recognition accuracy when expanding the

allowed vocabulary.

• Grammar: The grammar of the recognition domain defines the allowable

sequence of words. A tightly constrained grammar is one in which the

number of words that can follow any certain word is small. The amount of

30

constraint on word choice is referred to as the perplexity of the grammar.

Systems with low perplexity are potentially more accurate than those that

give the user more freedom because the system limits the vocabulary and

the search space to those words that can occur according to the current

context.

G. SUMMARY
This chapter provides background information about the history and basic

concepts of speech recognition. Operation of the speech-recognition process and

factors affecting the accuracy are explained.

31

THIS PAGE INTENTIONALLY LEFT BLANK

32

IV. THE JAVA SPEECH API

A. INTRODUCTION
This chapter examines the Java Speech API and describes the speech technologies

that it supports.

B. OVERVIEW
The Java Speech API, developed by Sun Microsystems in cooperation with

speech technology companies, defines a software interface that allows developers to take

advantage of speech technology for personal and enterprise computing [JSAPI 1.0]. By

leveraging the inherent strengths of the Java platform, the Java Speech API enables

developers of speech-enabled applications to incorporate more sophisticated and natural

user interfaces into Java applications and applets that can be deployed on a wide range of

platforms.

The Java Speech API defines a standard, cross-platform software interface to

state-of-the-art speech technology. Two core speech technologies are supported through

the Java Speech API: speech recognition and speech synthesis. Speech recognition allows

computers to listen to spoken language and to determine what has been said. In other

words, speech-recognition processes audio input containing speech by converting it into

text. Speech synthesis provides the reverse process of producing synthetic speech from

text provided by an application, an applet or a user. Speech synthesis is often referred to

as text-to-speech (TTS) technology.

Speech interfaces give Java application developers the opportunity to implement

distinct and engaging personalities for their applications and to differentiate their

products. The Java Speech API is an extension to the Java platform. Extensions are

packages of classes written in the Java programming language (and any associated native

code) that application developers can use to extend the functionality of the core part of

the Java platform.

33

The design goals for the Java Speech API were:

• Provide support for speech synthesizers and for both command-and-

control and dictation speech recognizers,

• Provide a robust cross-platform, cross-vendor interface to speech synthesis

and speech recognition,

• Enable access to state-of-the-art speech technology,

• Support integration with other capabilities of the Java platform, including

the suite of Java Media APIs.

C. CORE SPEECH TECHNOLOGIES

1. Speech Synthesis

A speech synthesizer converts written text into spoken language. Speech synthesis

is also referred to as text-to-speech (TTS) conversion.

The major steps in producing speech from text are as follows:

• Structure Analysis: Process the input text to determine where paragraphs,

sentences and other structures start and end. For most languages,

punctuation and formatting data are used in this stage.

• Text Pre-Processing: Analyze the input text for special constructs of the

language. In English, special treatment is required for abbreviations,

acronyms, dates, times, numbers, currency amounts, e-mail addresses and

many other forms. Other languages need special processing for these

forms and most languages have other specialized requirements.

The result of these first two steps is a spoken form of the written text. The

following table (Table 4.1) demonstrates examples of the difference between written and

spoken text.

34

Written Text

(Before Pre-Processing)

Spoken Text

(After Pre-Processing)

Leave at 6:30 on 6/15/99.

"Leave at six thirty on June fifteenth
nineteen ninety nine."

Add $50 to account 69243.

"Add fifty dollars to account six nine, two
four three."

Table 4.1 Written and Spoken Text Examples

The remaining steps convert the spoken text to speech.

• Text-to-Phoneme Conversion: Convert each word to phonemes. US

English has around 45 phonemes including the consonant and vowel

sounds. For example, "times" is spoken as four phonemes "t ay m s."

Different languages have different sets of sounds (different phonemes).

For example, Japanese has fewer phonemes, including sounds not found in

English, such as "ts" in "tsunami."

• Prosody Analysis: Process the sentence structure, words and phonemes to

determine the appropriate prosody for the sentence. Prosody includes

many of the features of speech other than the sounds of the words being

spoken. This includes the pitch (or melody), the timing (or rhythm), the

pausing, the speaking rate, the emphasis on words and many other

features. Correct prosody is important for making speech sound right and

for correctly conveying the meaning of a sentence.

• Waveform Production: Finally, the phonemes and prosody information are

used to produce the audio waveform for each sentence. The speech can be

produced from the phoneme and prosody information in many ways. Most

current systems achieve this in one of two ways: concatenation of pieces

35

of recorded human speech, or formant synthesis using signal processing

techniques based on knowledge of how phonemes sound and how prosody

affects those phonemes.

a. Speech-Synthesis Limitations
Speech synthesizers can make errors in any of the processing steps

described above. Human ears are well-tuned to detecting such errors, so careful work by

developers is needed to minimize errors and improve the speech-output quality.

b. Speech-Synthesis Assessment
The major feature of a speech synthesizer that affects its understandability,

its acceptance by users, and its usefulness to application developers is output quality.

Knowing how to evaluate speech synthesis quality and knowing the factors that influence

the output quality are important when deploying speech synthesis.

Humans are conditioned by a lifetime of listening and speaking. The

human ear and brain are highly sensitive to small changes in speech quality. A listener

can detect changes that might indicate a user's emotional state, an accent, a speech

problem or many other factors. The quality of current speech synthesis remains far below

that of human speech, so listeners must make more effort than normal to understand

synthesized speech and must ignore errors. For new users, listening to a speech

synthesizer for extended periods can be tiring and unsatisfactory.

The two key factors a developer must consider when assessing the quality

of a speech synthesizer are its understandability and its naturalness. Understandability

indicates how reliably a listener will understand the words and sentences spoken by the

synthesizer. Naturalness indicates the extent to which the synthesizer sounds like a

human voice–a characteristic that is desirable for most applications, but not for all.

Understandability is affected by a speech synthesizer’s ability to perform

all the processing steps described previously in combination, because any error by the

synthesizer can potentially mislead a listener. Naturalness is affected more by the later

36

stages of processing, particularly the processing of prosody and the generation of the

speech waveform.

Although the concept might seem counter-intuitive, creating an artificial-

sounding voice that is highly understandable is possible. Similarly, having a voice that

sounds natural but is not always easy to understand is also possible.

2. Speech Recognition
Speech recognition is the process of converting spoken language to written text or

some similar form. The basic characteristics of a speech recognizer supporting the Java

Speech API are

• It is monolingual; it supports a single specified language.

• It processes a single input audio stream.

• It can optionally adapt to the voice of its users.

• Its grammars can be dynamically updated.

• It has a small, defined set of application-controllable properties.

The major steps of a typical speech recognizer follow:

• Grammar Design: Recognition grammars define the words that may be

spoken by a user and the patterns in which the words may be spoken. A

grammar must be created and activated for a recognizer to know how to

listen for incoming audio.

• Signal Processing: Analyzes the spectrum (frequency) characteristics of

the incoming audio.

• Phoneme Recognition: Compares the spectrum patterns to the patterns of

the phonemes of the language being recognized.

• Word Recognition: Compares the sequence of likely phonemes against the

words and patterns of words specified by the active grammars.

• Result Generation: Provides the application with information about the

words the recognizer has detected in the incoming audio. The result
37

information is always provided once recognition of a single utterance is

complete, but this information may also be provided during the

recognition process. The result always indicates the recognizer's best

guess of what a user said, but may also indicate alternative guesses.

The primary way in which an application controls the activity of a recognizer is

through control of its grammars. A grammar is an object in the Java Speech API, which

indicates what words a user is expected to say and in what patterns those words may

occur. Grammars are important to speech recognizers because they constrain the

recognition process. These constraints make recognition faster and more accurate because

the recognizer does not have to check for bizarre sentences.

The Java Speech API supports two basic grammar types: rule grammars and

dictation grammars. These grammar types differ in the way in which applications set up

the grammars, the types of sentences they allow, the way in which results are provided,

the amount of computational resources required, and the way in which they are

effectively used in application design. Other speech-recognizer controls available to a

Java application include pausing and resuming the recognition process, direction of result

events and other events relating to the recognition processes, and control of the

recognizer's vocabulary.

In a rule-based speech-recognition system, an application provides the recognizer

with rules that define what the user is expected to say. These rules constrain the

recognition process. Careful design of the rules, combined with a careful user-interface

design, can produce rules that allow users reasonable freedom of expression while still

limiting the range of what may be said. In this manner, the recognition process is as fast

and accurate as possible. Any speech recognizer that supports the Java Speech API must

support rule grammars. The Java Speech Grammar Format Specification defines the full

behavior of rule grammars, and also discusses how complex grammars can be

constructed by combining smaller grammars.

Dictation grammars impose fewer restrictions on what can be said, making them

closer to providing the ideal of free-form speech input. The cost of this greater freedom is

38

that they require more substantial computing resources, require higher quality audio

input, and tend to make more errors.

A dictation grammar is typically larger and more complex than rule-based

grammars. Dictation grammars are typically developed by statistical training on large

collections of written text. Fortunately, developers do not need to know any of these

details because a speech recognizer that supports a dictation grammar through the Java

Speech API has a built-in dictation grammar. An application that needs to use that

dictation grammar simply requests a reference to it and enables it when the user might

say something matching the dictation grammar.

Dictation grammars may be optimized for particular kinds of text. Often a

dictation recognizer may be available with dictation grammars for general-purpose text,

for legal text, or for various types of medical reporting. In these different domains,

different words are used, and the patterns of words also differ.

A dictation recognizer in the Java Speech API supports a single dictation

grammar for a specific domain. The application (or user, or both) select an appropriate

dictation grammar when the dictation recognizer is selected and created.

a. Speech-Recognition Limitations
The two primary limitations of current speech-recognition technology are

inability to robustly transcribe free-form speech input, and errors in accuracy. Most

recognition errors fall into the following categories:

• Rejection: The user speaks but the recognizer cannot understand

what was said. The outcome is that the recognizer does not

produce a successful recognition result. In the Java Speech API,

applications receive an event that indicates the rejection of a result.

• Misrecognition: The recognizer returns a result with words that are

different from those that the user spoke. This is the most common

type of recognition error.

• Misfire: The user does not speak, but the recognizer returns a

result.
39

Table 4.2 lists some of the common causes of the three types of

recognition errors.

PROBLEMS POSSIBLE CAUSES

User speaks one or more words not in the vocabulary.

User's sentence does not match any active grammar.

User speaks before system is ready to listen.

Words in active vocabulary sound alike and are confused (e.g., "too,"

"two.")

User pauses too long in the middle of a sentence.

User speaks with a disfluency (e.g., restarts sentence, stumbles, "umm,"

"ah.")

User's voice trails off at the end of the sentence.

User has an accent or cold.

User's voice is substantially different from stored "voice models" (often a

problem with children).

Computer's audio is not configured properly.

Rejection

or

Misrecognition

User's microphone is not properly adjusted.

40

Non-speech sound (e.g., cough, laugh).

Background speech triggers recognition.

Misfire

User is talking with another person.

Table 4.2 Speech-Recognition Errors and Possible Causes [From JSAPI 1.0]

b. Speech-Recognition Assessment
Speech recognizers make mistakes. So do people, but recognizers usually

make more. Understanding why recognizers make mistakes, the factors that lead to these

mistakes, and how to train users of speech recognition to minimize errors are important

concepts for speech application developers.

The reliability of a speech recognizer is most often defined by its

recognition accuracy. Accuracy is usually given as a percentage and is most often the

percentage of correctly recognized words. Because the percentage can be measured

differently and depends greatly upon the task and the testing conditions, comparing

recognizers simply by their percentage recognition accuracy is not always possible. A

developer must also consider the seriousness of recognition errors: misrecognition of a

bank account number or the command "delete all files" may have serious consequences.

The following is a list of major factors that influence recognition accuracy.

• Recognition accuracy is usually higher in a quiet environment.

• Higher-quality microphones and audio hardware can improve

accuracy.

• Users that speak clearly (but naturally) usually achieve better

accuracy.

• Users with accents or atypical voices may obtain lower accuracy.

41

• Applications with simpler grammars typically achieve better

accuracy.

• Applications with less confusable grammars typically attain better

accuracy. Similar-sounding words are harder to distinguish.

While these factors can all be significant, their impact can vary between

recognizers because each speech recognizer optimizes its performance by trading off

various criteria. For example, some recognizers are designed to work reliably in high-

noise environments (e.g. factories and mines) but are restricted to very simple grammars.

Dictation systems have complex grammars but require good microphones, quieter

environments, and clearer speech from users and more powerful computers. Some

recognizers adapt their process to the voice of a particular user to improve accuracy, but

may require training by the user. Thus, users and application developers often benefit by

selecting an appropriate recognizer for a specific task and environment.

Only some of these factors can be controlled programmatically. The

primary application-controlled factor that influences recognition accuracy is grammar

complexity. Recognizer performance can degrade as grammars become more complex

and can degrade as more grammars are active simultaneously. However, making a user

interface more natural and usable sometimes requires the use of more complex and

flexible grammars. Thus, application developers often need to consider a trade-off

between increased usability with more complex grammars and the decreased recognition

accuracy this might cause.

3. Speech Engine
The javax.speech package of the Java Speech API defines an abstract

software representation of a speech engine, which is the generic term for a system

designed to deal with either speech input or speech output. Speech synthesizers and

speech recognizers are both speech engine instances. Speaker-verification systems and

speaker-identification systems are also speech engines but are not currently supported

through the Java Speech API.

42

The javax.speech package defines classes and interfaces that define the basic

functionality of an engine. The javax.speech.synthesis package and

javax.speech.recognition package extend and augment the basic functionality

to define the specific capabilities of speech synthesizers and speech recognizers.

The Java Speech API makes only one assumption about the implementation of a

JSAPI engine: that it provides a true implementation of the Java classes and interfaces

defined by the API. In supporting those classes and interfaces, an engine may be

completely software-based or may be a combination of software and hardware. The

engine may be local to the client computer or remotely operating on a server. The engine

may be written entirely as Java software or may be a combination of Java software and

native code.

The basic processes for using a speech engine in an application are as follows:

• Identify the application's functional requirements for an engine

(e.g, language or dictation capability),

• Locate and create an engine that meets those functional

requirements,

• Allocate the resources for the engine,

• Set up the engine,

• Begin operation of the engine-technically, resume it

• Use the engine,

• De-allocate the resources of the engine.

Applications are responsible for determining their functional requirements for a

speech synthesizer and/or speech recognizer. For example, an application might

determine that it needs a dictation recognizer for the local language or a speech

synthesizer for Korean with a female voice. Applications are also responsible for

determining behavior when there is no speech engine available with the required features.

Based on specific functional requirements, a speech engine can be selected, created, and

started.

43

Functional requirements are handled in applications as engine selection

properties. Each installed speech synthesizer and speech recognizer is defined by a set of

properties. An installed engine may have one or many modes of operation, each defined

by a unique set of properties and encapsulated in a mode descriptor object.

The basic functionality provided by a synthesizer is speaking text, managing a

queue of text to be spoken and producing events as these functions proceed. The

Synthesizer interface extends the Engine interface to provide this functionality.

The basic functionality provided by a recognizer includes managing the grammar

and producing results when a user makes utterances that match active grammars. The

recognizer interface extends the engine interface to provide this functionality.

D. JAVA SPEECH GRAMMAR FORMAT (JSGF)
Speech-recognition systems provide computers with the ability to listen to user

speech and determine what is said. Current technology capabilities do not yet support

unconstrained speech recognition, i.e. the ability to listen to any speech in any context

and transcribe it accurately. To achieve reasonable recognition accuracy and response

time, current speech recognizers constrain what they listen for by using grammars.

The Java Speech Grammar Format (JSGF) defines a platform-independent means

of describing one type of grammar, a rule grammar (also known as a command and

control grammar or regular grammar). JSGF uses a textual representation that both

developers and computers can read and can edit and can be included in the Java source

code.

A rule grammar specifies the types of utterances a user might say (a spoken

utterance is similar to a written sentence). For example, a simple window control

grammar might listen for "open a file," "close the window," and similar commands. What

the user can say depends upon the context: Desired results may vary greatly, depending

on whether the user controlling an email application, reading a credit card number, or

selecting a font (for example). Applications know their own context based on their

operations, so applications are thus responsible for providing a speech recognizer with

appropriate and corresponding grammars.
44

1. Definitions

a. Grammar Names and Package Names
Each grammar defined by Java Speech Grammar Format has a unique

name that is declared in the grammar header. The Full grammar name is in the form of

package name + simple grammar name, for instance:

com.sun.speech.apps.numbers. A simple grammar name includes the grammar

name only, for example: numbers. The package name and grammar name have the

same format as packages and classes in the Java programming language.

b. Rulenames
A grammar is composed of a set of rules that together define what may be

spoken. Rules are combinations of speakable text and references to other rules. Each rule

has a unique rulename. A reference to a rule is represented by the rule's name in

surrounding <> characters (less-than and greater-than).

Grammar developers should be aware of two specific constraints. First,

rulenames are compared with exact Unicode string matches, so case is significant. For

example, <Name>, <NAME> and <name> are different. Second, white space is not

permitted in rulenames.

The rulenames <NULL> and <VOID> are reserved. <NULL> defines a

rule that is automatically matched: that is, matched without the user speaking any words.

<VOID> defines a rule that can never be spoken. Inserting <VOID> into a sequence

automatically makes that sequence unspeakable.

c. Tokens
A token, sometimes called a terminal symbol, is the part of a grammar that

defines what may be spoken by a user. Most often, a token is equivalent to a word. In

Java Speech Grammar Format (JSGF), a token is a character sequence bounded by

whitespace, by quotes or delimited by the other symbols that are significant in the

grammar. A token is a reference to an entry in a recognizer's vocabulary, often referred to

45

as the lexicon. The recognizer's vocabulary defines the pronunciation of the token. With

such pronunciation, the recognizer is able to listen for that token.

A token does not need to be a single word. A token may be a sequence of

words or a symbol. Quotes can be used to surround multi-word tokens and special

symbols, for example, the "New York" subway.

d. Comments
Comments may appear in both the header and body. The comment style of

the Java Programming Language is adopted. Comments may appear anywhere in a

grammar definition, except within tokens, quoted tokens, rulenames, tags and weights.

e. Grammar Header
A single file defines a single grammar. The definition grammar contains

two parts: the grammar header and the grammar body. The grammar header includes a

self-identifying header, declares the name of the grammar and declares imports of rules

from other grammars.

f. Grammar Body
The grammar body defines rules. Each rule is defined in a rule definition.

A rule is defined once in a grammar. The order of definition of rules is not significant.

2. Rule Expansions

The simplest rule expansions are a reference to a token and a reference to a rule.

For example,

<a> = horse;

 = <a>;

<c> = <com.acme.grammar.zenith>;

The rule <a> expands to a single token "horse." Thus, to speak <a> the user must

say the word "horse." The rule expands to <a>. This means that to speak , the

46

user must say something that matches the rule <a>. Similarly, to speak rule <c> the user

must speak something that matches the rule <com.acme.grammar.zenith>.

3. Defining Complex Rules
Complex rules can be defined by logical combinations of legal expansions using

the following procedures:

a. Composition and Sequences
A rule may be defined by a sequence of expansions. A sequence of legal

expansions, each separated by white space, is itself a legal expansion.

<where> = I live in Monterey;

<statement> = this <object> is <Condition>;

To speak a sequence, each item in the sequence must be spoken in the

defined order. In the first example, to say the rule <where>, the speaker must say the

words, “I live in Monterey” in that exact order. The second example mixes tokens with

references to the rules <object> and <Condition>. To say the rule <statement>, the user

must say “this” followed by something that matches <object>, then “is,” and finally

something matching <Condition>.

A rule may be defined as a set of alternative expansions separated by

vertical bar characters ‘|’ and optionally by whitespace. For example:

<name> = Don | Nancy | Allen | Ozan | <otherNames>;

To say the rule <name>, the speaker must say one, and only one of the

items in the set of alternatives. For example, a speaker could say, "Don," "Nancy,"

"Allen," "Ozan" or anything that matches the rule <otherNames>. However, the speaker

could not say "Nancy Allen" because the | operator corresponds to exclusive or.

It is worthy noting that that Sequences have higher precedence than

alternatives.

47

b. Grouping

Any legal expansion may be explicitly grouped using matching

parentheses ‘()’. Grouping has a high precedence and so can be used to ensure the correct

interpretation of rules. Grouping is also useful for improving clarity. For example,

because sequences have higher precedence than alternatives, parentheses are required in

the following rule definition so that "please close" and "please delete" are legal

combinations.

<action> = please (open | close | delete);

Square brackets may be placed around any rule definition to indicate that

the contents are optional. In other respects, they are equivalent to parentheses for

grouping and has the same precedence. For example,

<polite> = please | oh mighty computer;

public <command> = [<polite>] don't crash;

The rule <command> allows a user to say, "Don't crash" and to optionally

add one form of politeness such as, "Oh mighty computer, don't crash" or "Please, don't

crash."

c. Unary Operators
There are three unary operators in the Java Speech Grammar Format: the

Kleene star (*) operator, the Kleene cross (+) operator, and tags.

A rule expansion followed by the asterisk symbol indicates that the

expansion may be spoken zero or more times. The asterisk symbol is known as the

Kleene star (after Stephen Cole Kleene, who originated the use of the symbol). [JSGF]

For example,

<polite> = please | oh mighty computer;

<command> = <polite>* don't crash;

The rule <command> allows a user to make an utterance like, "Please

don't crash," "Oh mighty computer, please, please don't crash," or to ignore politeness

with "Don't crash."
48

A rule expansion followed by the plus symbol indicates the expansion

may be spoken one or more times. For example,

<polite> = please;

<command> = <polite>+ don't crash;

The preceding rule requires at least one form of politeness. So, it allows a

user to say, "Please, please don't crash." However, "don't crash" is not legal.

Tags provide a mechanism for grammar writers to attach application-

specific information to parts of rule definitions. Applications typically use tags to

simplify or to enhance the processing of recognition results. Tag attachments do not

affect the recognition of a grammar. Instead, the tags are attached to the result object

returned by the recognizer to an application. The software interface of the recognizer

defines the mechanism for providing tags.

A tag is a unary operator. As such it may be attached to any legal rule

expansion. The tag is a string delimited by curly braces ‘{}’. All characters within the

braces are considered a part of the tag, including white space.

The tag attaches to the immediate preceding rule expansion (intervening

white space is ignored). For example,

<rule> = <action> {tag};

As a unary operator, tag attachment has a higher precedence than

sequences and alternatives. For example,

<publication> = book | magazine | newspaper {thing};

The "thing" tag is attached only to the "newspaper" token. Parentheses

may be used to modify tag attachment:

< publication> = (book | magazine | newspaper) {thing};

Unlike the other unary operators, more than one tag may follow a rule

expansion. For example,

<legalRule> = <action> {tag1} {tag2} {tag3}; // legal

49

Table 4.3 shows two basic grammar examples that define spoken

commands, which control a window.

 grammar com.acme.politeness;

 // Body

 public <startPolite> = (please | kindly | could you |

oh mighty computer)*;

 public <endPolite> = [please | thanks | thank you];

 grammar com.acme.commands;

 import <com.acme.politeness.startPolite>;

 import <com.acme.politeness.endPolite>;

 /**

 * Basic command

 * @example please move the window

 * @example open a file

 */

public <basicCommand> = <startPolite> <command>

<endPolite>;

 <command> = <action> <object>;

 <action> = open | close | delete | move;

 <object> = [the | a] (window | file | menu);

Table 4.3 Grammar Examples [From JSGF]

50

E. SUMMARY

This chapter examines the Java Speech API and describes the speech technologies

that are supported through Java Speech API. Java Speech Grammar Format (JSGF) and

the structure of rule grammars are also examined.

51

THIS PAGE INTENTIONALLY LEFT BLANK

52

V. IMPLEMENTATION: BUILDING A NETWORKED,
VOICE-ACTIVATED HUMANOID ANIMATION

A. INTRODUCTION
This chapter discusses the initial system structure, development process and

implementation details of a networked, voice-activated humanoid animation. An

assessment of the final product follows.

The main objective of the initial system is to create humanoid animation driven

by human voice. VRML-Java communication makes this objective possible. The

development process involves building a motion library, putting the avatars and

behaviors together (Interchangeable Actors), voice enabling, networking, and providing

available commands and feedback.

B. INITIAL LOW-LEVEL SYSTEM STRUCTURE
System design goals for this project aim to create humanoid animation that a

human voice can direct. When a user speaks to a microphone that is connected to the

sound card of a computer, the voice input is provided to a speech-recognition application.

The speech-recognition application processes this input through predefined acoustic and

language models. The speech-recognition engine matches the treated input to the active

grammar rules and outputs one or more results or rejects it. Rejection is also considered

as a possible result.

The output result of the recognition process is the determinant of the active

animation and geometry. The result is compared with the possible conditions, which

provides mapping from voice commands to specific predetermined animation behaviors.

Nevertheless, the model geometry, which is an avatar in this case, is animated according

to the matched condition. Figure 5.1 illustrates initial low-level system structure.

53

Figure 5.1 Initial Low-Level System Structure of a Voice-Activated Application

54

C. SYSTEM COMPONENTS

1. IBM VIAVOICE SDK
The ViaVoice SDK is an implementation of the JavaTM Speech API. The SDK

supports voice-command recognition, dictation, and text-to-speech synthesis,

incorporating IBM's ViaVoice speech technology into user interfaces. In much the same

way that Java implementations on Windows are built on top of the native Windows GUI

capabilities, the ViaVoice SDK, Java Technology Edition is built on top of the native

speech recognition and synthesis capabilities in the IBM ViaVoice. The SDK then

exposes the standard Java voice interfaces. In order to run the application using the SDK,

the user must install an IBM ViaVoice product or ViaVoice executable runtime libraries

on the computer. Other implementations of a Voice SDK are possible–this work uses

IBM ViaVoice implementation as an excellent current implementation. The IBM

ViaVoice SDK is chosen as the basis for building a VUI in this project for two significant

reasons:

• The SDK provides access to the ViaVoice engine, which is one of the

major speech-recognition engines, and provides the opportunity to build a

customized or standardized voice-enabled application.

• The application deriving the SDK classes is implemented in Java, which is

a versatile language that enables authors to create and trigger complex

animations in VRML/X3D scenes.

2. Human Models
Since they are compliant with the H-Anim Specifications and they have similar

skeleton structures, three avatars, Allen, Nancy and Box Man, formed the human models

used in this thesis. These avatars are described in Chapter II.

3. VRML-Java Communication
In the first look, VRML may seem like a limited programming language with

predefined nodes suitable only for 3D graphics rendering. Nevertheless, the Script node

enables advanced authors to create complex animated 3D scenes. Combining the

55

authoring abilities of VRML with the programming capabilities of Java is possible by

integrating code and content via this node.

VRML and Java communicate via Script nodes, which allow authors to connect

Java variables to VRML fields. Figure 5.2 shows the basic Script node interface. Type

conversion between Java and VRML can be obtained importing vrml.* class libraries

[DIS-Java-VRML]. However, Java classes, referred by Script nodes, must extend the

vrml.node.Script class to interface properly with the VRML browser.

 Figure 5.2 Script Node Interface [Ames 97]

The data type exposedField indicates that the associated variable has public

access, whereas the field data type provides only initialization and private access to

the respective variable. The exposedField data member url contains the location of

the java class file. This location may be locally on the hard drive or in the Internet. The

value of the url exposed field specifies a prioritized list of Uniformed Resource Locators

(URLs), ordered from highest priority to lowest. If the browser cannot find the named file

in the first location, it tries the second URL in the list, and so on. The fields

directOutput and mustEvaluate are hints to the browser on how to optimize

performance. When directOutput is set to FALSE, the script may read, but not write

the value of any exposedField and eventOut for any node object to which it has

access. Conversely, when the value of the directOutput field is TRUE, the program
56

script may also write the value of any exposedField and send a value to any

eventIn of any node value to which it has access. If mustEvaluate is FALSE, the

browser may postpone program script evaluation. Setting this value to TRUE, forces the

browser to update when a new value is received by an eventIn for the node. The data

types eventIn and eventOut are events, which provide interactivity and fluidity to

the VRML scenes. Events are time-stamped values of data types, and eventIn data

types of a target node must match exactly the ROUTEd eventOut data types from a

source node. When a pre-defined event is triggered, the value of the variable is sent along

with a time-stamp from the eventOut connection to the associated eventIn

connection. Figure 5.3 shows an example of VRML-Java communication.

VRML Scene Graph Node DEFs A Java Class Modifying VRML Scene

 Group
 Viewpoint firstViewPoint
 TouchSensor clickTextToTest
 touchTime
 Transform textPosition
 translation
 Shape
 appearance
 material
 geometry
 text messageToUser
 string
 fontStyle
 Script scriptNode
 url scriptNodeFieldControl
 eventIn startTime
 field changedText USE messageToUser

import vrml.*;
import vrml.field.*;
import vrml.node.*;

public class ScriptNodeFieldControl
extends Script {
 eventIn startTime
 field changedPosition
 field changedText

 public void initialize()
 //connect eventIn & fields
 //set changedText to intermediate
 //value

 public void processEvent(Event touch)
 //activated by user’s clickTextToTest
 //changedText & changedPosition field
 //update
 //references directly modify VRML
 //scene
}

 field changedPosition USE textPosition

 Figure 5.3 An Example of VRML-Java Communication [Brutzman 98]

57

Upon starting the VRML scene, the associated java class identified by the script

node's url field is accessed, and its public method initialize() is called

automatically. In this method, the fields passed by reference from the VRML file are

connected to the eventIn and field variables. The programmer may also perform

any initialization that is deemed necessary, such as positioning or content changes. When

the user activates the TouchSensor named clickTextToTest by clicking on the text with

the mouse, an event and time-stamp is sent from touchTime's eventOut to the script

node's eventIn startTime. This step calls the script node's public method

processEvent(), which can then perform any desired computations. The

programmer can then perform any java functionality that is desired and modify the fields

passed in by reference accordingly. In this example, both the content and position of the

text string is modified. [Dutton 2001]

D. DEVELOPMENT PROCESS

1. Building a Motion Library
A motion library is needed to animate the avatars; Allen, Nancy and Box Man.

This motion library will be the basis for interchangeable animations. Nancy’s animation

behaviors are implemented as independent five behaviors; Stand, Walk, Run, Jump and

Kneel. These behaviors are created using Prototype definitions and intended to be

reusable by other humanoids. The created behaviors are examples of forward kinematics,

that is, each joint angle corresponding to that behavior was specified by the author.

Prototype nodes in VRML enables authors to create new node types, which

consist of a node interface and a node body. Fields, exposedFields, eventIns, and

eventOuts, similar to the program script interface declared in a Script node, describe the

node interface. The node body describes what the node does and how it does it. A node

body is defined using any combination of predefined VRML and other prototype nodes.

Prototype recursion is not allowed.

A ProtoDeclare defines a new node type that can be used anywhere in the rest of

the same file. There are times, however, when it is more convenient to put ProtoDeclare

in an external file, such as when maintaining a library of new node types. In these cases,

this ProtoDeclare can be accessed by using an ExternProtoDeclare in a different file.

This new node can then be used and instantiated by ProtoInstance in the rest of the file.

ProtoDeclares of the animation behaviors are placed in separate files and in this

way, a motion library is constructed. This library is online at

http://www.web3d.org/TaskGroups/x3d/translation/examples/HumanoidAnimation/chapt

58

http://www.web3d.org/TaskGroups/x3d/translation/examples/HumanoidAnimation/chapter.html

er.html. To use one of these animation prototypes in a different humanoid .x3d file, the

node definition can be referenced by using ExternProtoDeclare (external prototype).

ExternProtoDeclare includes a URL or a list of URLs that references an external file

containing the corresponding ProtoDeclare. When the VRML browser encounters the

ExternProtoDeclare, it finds the new node-type definition in the file specified by the

URL. That new node type is then available for use anywhere in the rest of the file. Figure

5.4 shows an example of ExternProtoDeclare, which references one of the behavior

Protos.

Figure 5.4 X3D-Edit Screen Snapshot of Run ExternProto

http://www.web3d.org/TaskGroups/x3d/translation/examples/HumanoidAnimation

/LOA1_RunAnimation.x3d

2. Putting the Avatars and Behaviors Together: The Interchangeable
Actors

59

http://www.web3d.org/TaskGroups/x3d/translation/examples/HumanoidAnimation/chapter.html
http://www.web3d.org/TaskGroups/x3d/translation/examples/HumanoidAnimation/LOA1_RunAnimation.x3d
http://www.web3d.org/TaskGroups/x3d/translation/examples/HumanoidAnimation/LOA1_RunAnimation.x3d

One of the most important goals of this thesis is to create an example that

demonstrates interchangeable humanoids and animations. This example was built by

employing three avatars (Allen, Nancy, and Box Man) and five animation behaviors

(Stand, Walk, Run, Jump, and Kneel).

Since a visual editor provides a significant advantage for the author to reduce the

errors when dealing with complex structures like humanoids, X3D-Edit was used to

implement this project. As the first step, Allen was converted to X3D native tags because

an X3D version of it did not previously exist. Then the avatars were put in the same scene

in such a way that the active one could switch to any of the others. The motion library,

mentioned previously, is referenced by using ExternProtoDeclares. The behavior

prototypes were then instantiated. Texts, to which touch sensors are attached, are also

added to the scene to activate an avatar or a behavior.

ROUTEs are wires, which connect eventIns to eventOuts and carry events from

one to another. Hard wiring (static routing) was one of the available options in

implementing. However this method had some drawbacks such as performance

degradation (continuous event exchange between inactive avatars and active behavior)

and expanding complexity (hard to add new avatars and behaviors). Instead, Dynamic

Routing was used to eliminate these disadvantages. A script (JavaScript) was written to

provide the connections between the avatars and the behaviors. Only active behavior and

avatar were wired within the script. First, avatar, avatar joint, and animation behavior

DEFs were indexed. Then, relevant connections between avatar joints and animation

behavior interpolators were created and deleted using the addRoute() and

deleteRoute() methods of Browser class (refer to [VRML 97]) to animate the

active avatar with the active animation behavior. The ROUTE redundancy in Static

Routing can be clearly seen in Figure 5.5.

60

Figure 5.5 Static Routing vs. Dynamic Routing

When the user clicks on the relevant text to change the current avatar or behavior,

the script gets the event and accordingly creates a new ROUTE set between the active

avatar and behavior after deleting the old Routes. Besides dynamic routing operations,

the script also handles avatar switching.

61

Figure 5.6 Screen Shot of Interchangeable Actors

3. Voice Enabling
The Nancy avatar was the first example to be connected to voice activation during

this project. Instead of using the mouse for selections, a user can state one of the available

commands to animate Nancy. These one-word commands consisted of four animation

behaviors: Stand, Walk, Run and Jump. Later, the Allen avatar was voice-activated in the

same way and a Kneel behavior was further added. These two successful experiences led

to a more complex task: Voice Activation of Interchangeable Actors.

IBM ViaVoice SDK, an implementation of Java Speech API, was used to build a

suitable VUI. A speech recognizer class in Java was written to create necessary objects

and allocate required resources for speech recognition and synthesizing. Moreover, the

limit of the dialogue between user and the application must be defined. Since this is an

62

exemplar command and control application, commands available to the user were

determined. These commands, consisting of one or more words, were divided into two

groups. The first group was used to initiate the application (opening the browser and

loading the scene) and the second group was intended for animation (activating avatars

and behaviors). Based on the determined commands, a grammar in Java Speech Grammar

Format (refer to Chapter IV) was built for this application. The grammar rules were

designed so that they provided more than one command option for a specific task. Table

5.1 indicates legal voice commands in this application. The grammar was located on a

text file separate from the source code. Otherwise, any change of one of the grammar

rules required recompiling the code. The grammar rules are read from this text file, and

then parsed and enabled in the recognizer class. The speech-recognition application takes

the user’s voice command, tries to match the input to one of the active rules and provides

an array of results and their tags. Then, the best result’s tag is sent to a client application

through the network. The reason for sending tags instead of results is that a tag may

represent multiple results, which flag the same task and consequently makes handling the

incoming packet content on the client side easier.

The recognition application also has a synthesizer object that greets the user when

the application is initiated. Additionally, this object provides feedback to the user when

the recognition engine cannot match the voice input to one of the active grammar rules,

that is, when the result is rejected.

63

 Welcome Phase Commands

Initiate Actors

Initiate Humanoid Animation

Initiate Avatars

Open Actors

Open Humanoid Animation

Open Avatars

Start Actors

Start Humanoid Animation

Start Avatars

Table 5.1 Recognized Voice Commands during We

64

Animation Phase Commands

Nancy
Allen
Box Man
Switch To Nancy
Switch To Allen
Switch To Box Man
Display Nancy
Display Allen
Display Box Man
Turn Into Nancy
Turn Into Allen
Turn Into Box Man
Jump
Run
Walk
Kneel
Stand
Why Don’t You Jump
Why Don’t You Run
Why Don’t You Walk
Why Don’t You Kneel
Why Don’t You Stand
Could You Jump
Could You Run
Could You Walk
Could You Kneel
Could You Stand
Please Jump
Please Run
Please Walk
Please Kneel
Please Stand
Good bye
So long
lcome Phase and Animation Phase

4. Networking

Creating a networked application is also one of the primary goals of this thesis.

The DIS-Java-VRML package implements and simplifies VRML-Java communication,

as previously discussed in this chapter.

User Datagram Protocol / Internet Protocol (UDP/IP) is used as the network

protocol. UDP provides a connectionless transmission and best-effort delivery. With

UDP/ IP, an application can direct a packet to be sent to one other application endpoint.

Although UDP/IP is not as reliable as Transmission Control Protocol (TCP), it removes

most of the overhead introduced by TCP [Zyda 99].

The designed networking system consists of one server and two client

applications. The server application (SpeechRecognizer) sends DatagramPackets to the

network. In this implementation, a DatagramPacket includes a destination and a matched

rule tag, which is the result of the recognition process. With the first client application

(InvocationClient), to open the browser, to load the VRML scene and to quit the client

side applications are aimed. The server application sends the rule tags, related with the

initiation of the scene, to the first client. Then, this client application invokes the browser

by creating it as a Process object. Besides, the invoked browser loads the VRML scene.

Once the browser loads the VRML file, the OrderExecutor class is executed through the

Script node. The OrderExecutor class starts the second client (ClientNetListener) as a

thread. This time, the server sends DatagramPackets to the second client. The second

client passes the incoming packet content to the OrderExecutor class. According to the

packet content, the OrderExecutor class affects the relevant VRML nodes for demanded

animation (refer to VRML-Java communication). Figure 5.7 demonstrates a flowchart of

this networking process.

65

Speech
Recognizer

HOST A HOST B

Invocation
Client

 BROWSER

HOST A

Speech
Recognizer

HOST B

Figure 5.7 F

A user may open the

animate the available avatars

or she may quit the applicatio
VRML
SCENE
HOST B

ClientNetListener

 BR R

OrderExecutor

lowchart of Networked Humanoid A

browser, which displays the VRML

 in a remote host with his or her voi

n without clicking or typing. (See F

66
OWSE
VRML
SCENE
OrderExecutor
nimation

 scene and may also

ce commands. Then, he

igure 5.8)

Figure 5.8 Networked, Voice-Enabled Humanoid Animation System Structure

5. Providing Available Commands and Feedback

The user should know what to say to the application. If the number of the

available commands is excessive, displaying them becomes a must. Hence, some GUI

components showing the available commands are employed. A message that indicates

what is said (recognized command) and a volume-level indicator are also added to these

GUI components for feedback purposes. The Voice Panel automatically adjusts its size

according to the screen resolution once it is initiated. Figure 5.9 demonstrates Voice

Panel and Figure 5.10 shows a screen shot of the Voice Activated Interchangeable

Actors.

67

Recognized Command
Volume Level Indicator

Available Commands

Figure 5.9 Voice Panel Showing Animation Phase Commands

68

Figure 5.10 Screen Shot of Voice-Activated Interchangeable Actors (Nancy and Walk
selected)

E. ASSESSMENT OF THE FINAL PRODUCT

The features of the final product can be summarized as

• Hybrid: It involves both VUI and GUI components.

• Networked (UDP/IP): A user may command and control the client

applications in a remote host.

• User-Independent: The speech recognizer application does not require any

training to understand the user’s speech patterns.

• Mono-Lingual: It understands only English commands.

69

• Multi-Platform: Since only Java and VRML are used in implementing, the

final product may run on various platforms and operating systems.

Different users experienced the final product. Two of the experiences will only be

discussed because they are extreme examples of the varied performances. The first one

took place in front of an audience in the final academic presentation of this thesis. The

audience was well informed about the factors affecting the accuracy (specifically noise)

by the presenter. A person from the audience was called for the demo. Before the

presentation, the participant was given some important tips, such as “no shouting, speak

naturally, no need to speak discretely,” etc. The participant followed the tips and 100%

accuracy was observed. In another experience, a participant, who had no background

with speech-recognition applications and had an atypical voice, tested the application.

The participant was speaking discretely and loud. Moreover, the audience in the

background was talking continuously. As a result, 20% accuracy, which is very low, was

observed. These two examples present how important the user’s training is, and how

noise affects the accuracy.

IBM ViaVoice SDK supports French, German, Italian, Spanish, UK English, and

US English. Therefore, the final product is promising for limited internationalization

(I18N). However, the current implementation, grammar, and user interfaces must be

modified when integrating this capability. I18N testing is a promising area for future

work.

F. SUMMARY
This chapter discussed the design issues, implementation details, development

process and provided an assessment of the final product.

70

VI. CONCLUSION AND FUTURE WORK

A. THESIS CONCLUSIONS

1. Integration of Speech-Recognition Technology to the Networked
Virtual Environments (Net-VEs)

As computation power increases, integrating the speech-recognition technology to

the Networked Virtual Environments (Net-VEs) is possible. This thesis demonstrates a

way of realizing this objective. Improvements in speech-recognition technology to build

more robust speech-recognition applications will expedite this integration.

2. Hybrid Interfaces (VUI + GUI)
The applications incorporating VUIs and GUIs in an appropriate way can be very

powerful. While a VUI provided access to the application, the GUI components obtained

feedback and displayed available commands for the user in this thesis. Hybrid interfaces

may also augment the speed to access an application. For example, when using an

application in a hybrid interfaced operating system, a user might need to open another

application. In this case, the user orders the operating system to do it with his or her

voice. This capability eliminates the overhead introduced by the GUI-dependent

operating systems, such as minimizing the window, finding the application shortcut and

starting it, etc.

3. Interchangeable Humanoids and Animation Behaviors
Humanoids and animations can be authored independently. Choosing humanoids,

which have identical skeleton structures, reduces the complexity in creating

interchangeable humanoids and animation behaviors. Reusable animation behaviors can

be created, prototyped and applied to various humanoids, which are built according to

standard specifications. When dealing with interchangeability of the humanoids and

behaviors, the efficiency of the implementation becomes very important. Building

archived libraries of humans and behaviors will become increasingly valuable.

71

B. RECOMMENDATIONS FOR FUTURE WORK

1. Building Simulation of a Scenario or a Game
The next step in this research is to build a simulation or a game, which takes

advantage of VUIs. Besides accessing the application with voice, avatars that can fulfill

voice commands may also be inserted to the simulation or the game. Then the available

entities in the simulation or game can be directed by the voice of the user. The

programmer must carefully design commands available to the user by considering the

usability of the application.

2. Improving Networking

According to the chosen scenario or game, present networking implementation

may be changed and improved. UDP/IP, used as the network protocol in this project,

offers no reliability or ordering guarantees. In the scope of a simulation or a game to be

implemented, a more reliable protocol, which offers a customized packet, can be used.

3. Expanding the Motion Library
This thesis included building a reusable motion library. This library consists of

limited number of behaviors. Therefore, the motion library can be easily expanded with

motion tracking systems. Using motion-tracking systems to obtain new animation data

also contributes to the realism of the behavior.

4. Composition of Animation Behaviors
The user might want to combine two available animation behaviors. For example,

he or she might say “Run and Jump.” Current application does not handle this situation.

This issue can be addressed in the following ways by:

• Designing a hierarchical structure for animation behaviors so that the

behavior with a higher precedence is preferred on top of the behavior, with a

lower precedence.

• Creating a hybrid behavior that includes the characteristics of both

behaviors.

72

5. Agents

Agents are like software nano-robots. They give designers the ability to solve

problems indirectly, from inside the virtual representation of the problem. They also give

the problem solver a low-level, detail rich view of the problem or model. Agents adapt,

learn and take action based on local information at the lowest level of the problem or

model [Hiles 2001]. Agents and speech-recognition technologies can be used together to

emulate human behavior and to provide intelligent virtual characters in Virtual

Environments (VEs).

6. Support for Tactical Applications
Speech-recognition technology can improve team communication in diverse and

hazardous environments. Noise-cancellation headsets can lead to protection of operators

in life-threatening situations. Augmented reality (AR) can provide a great deal of

operational support information to team members when aural or visual perception is weak

or impossible. Moreover, body-tracking systems can send the position, orientation and

behavior information of team members in a hazardous area to a central visualization

system to be reviewed by the experts in real time. Visual display of this information

bundle can provide a great deal of support in making critical decisions and save lives.

73

THIS PAGE INTENTIONALLY LEFT BLANK

74

APPENDIX A – ACRONYMS

API Application Programming Interface

AR Augmented Reality

DAG Directed Acyclic Graph

DARPA Defense Advanced Research Project Agency

DOD Department of Defence

DTD Document Type Definition

EXTERNPROTOs External Prototypes

FBCB2 Force XXI Battle Command, Brigade and Below

GUIs Graphical User Interfaces

H-Anim Humanoid Animation

IP Internet Protocol

ISO International Standards Organization

I18N Internationalization

JSAPI Java Speech API

JSGF Java Speech Grammar Format

Net-VEs Networked Virtual Environments

NLP Natural Language Processing

NPS Naval Postgraduate School

PDAs Personal Digital Assistants

PROTOs Prototypes

SALT Size, Activity, Location, Time

SUR Speech Understanding Research

75
TCP Transmission Control Protocol

TTS Text-to-Speech

UDP User Datagram Protocol

URLs Uniformed Resource Locators

VEs Virtual Environments

VRML Virtual Reality Modeling Language

VUIs Voice User Interfaces

X3D Extensible 3D

76

APPENDIX B – 3D SCENES AND ANIMATION BEHAVIORS

All 3D scenes and animation behaviors are included in the Source Code CD. The

source code files and directories in the Source Code CD are

– ClientNetListener.java, .class

– Invocation Client.java, .class

– OrderExecutor.java, .class

– Speech Recognizer.java, .class

– VoicePanel.java, .class

– Rule.txt

– Readme.html

– Under X3D directory;

VoiceActivatedInterchangeableActors.x3d

LOA1_JumpAnimation.x3d

LOA1_KneelAnimation.x3d

LOA1_RunAnimation.x3d

LOA1_StandAnimation.x3d

LOA1_WalkAnimation.x3d

– Under VRML directory

VoiceActivatedInterchangeableActors.wrl

LOA1_JumpAnimation.wrl

LOA1_KneelAnimation.wrl

LOA1_RunAnimation.wrl

LOA1_StandAnimation.wrl

LOA1_WalkAnimation.wrl

77

– slides directory

– centers directory

– javadoc directory

– lib directory

78

APPENDIX C – CD DISTRIBUTION LIST

1. Michael Zyda
 Chair, MOVES Academic Group

Naval Postgraduate School
 Monterey, California

2. Rudy Darken

Naval Postgraduate School
Monterey, California

3. Don Brutzman
 Naval Postgraduate School

Monterey, California

4. Xiaoping Yun
 Naval Postgraduate School

Monterey, California

5. Chris Darken
Naval Postgraduate School
Monterey, California

79

THIS PAGE INTENTIONALLY LEFT BLANK

80

LIST OF REFERENCES

[Ames 97] Ames, A.L., Nadeu, D.R., and Moreland, J.L., “VRML2.0 Sourcebook”,

John Wiley& Sons, Inc, 1997.

[Brutzman, Blais, Horner, Nicklaus 2001] Brutzman D. P., Blais C., Horner D.,

Nicklaus S., “Web-Based 3D Technology for Scenario Authoring and Visualization: The

SAVAGE Project”, 2001.

[DIS-Java-VRML] DIS-Java-VRML Working Group,

http://www.web3d.org/WorkingGroups/vrtp/dis-java-vrml/

[Dutton 2001] Dutton, A., “Developing Articulated Human Models from Laser Scan

Data for Use as Avatars in Real-Time Networked Virtual Environments”, M.S. Thesis,

2001.

[Fulton 2000] Fulton, S. M., “Speak Softly, Carry a Big Chip”, The New York Times,

March 30, 2000.

[H-Anim 1.1] H-Anim 1.1 Specification, http://www.h-anim.org/Specifications/H-

Anim1.1/

[H-Anim 2001] H-Anim 2001 Specification, http://www.h-anim.org/Specifications/H-

Anim2001/

[Hiles 2001] Hiles, J., “Software Agents: Smarter, Easier to Create, More Capable”,

2001, http://www.movesinstitute.org/OpenHouse2001/Presentations/Hiles.ppt

[JSAPI 1.0] JavaTM Speech API 1.0 Specification and Java Speech API Programmer’s

Guide, http://java.sun.com/products/java-media/speech/

[JSGF] Java Speech Grammar Format Specification,

http://java.sun.com/products/java-media/speech/forDevelopers/JSGF/index.html

[Kavanagh 95] Kavanagh, B., “Speech Recognition”, 1995

81

http://www.web3d.org/WorkingGroups/vrtp/dis-java-vrml/
http://www.h-anim.org/Specifications/H-Anim1.1/
http://www.h-anim.org/Specifications/H-Anim1.1/
http://www.h-anim.org/Specifications/H-Anim2001/
http://www.h-anim.org/Specifications/H-Anim2001/
http://www.movesinstitute.org/OpenHouse2001/Presentations/Hiles.ppt
http://java.sun.com/products/java-media/speech/
http://java.sun.com/products/java-media/speech/forDevelopers/JSGF/index.html

[Kemble 2001] Kemble, K., A., “An Introduction to Speech Recognition”, October
2001

[Long 94] Long, B., “Natural Language as an Interface Style”, University of Toronto,

May 1994.

[Maurer] Maurer, J., “History of Speech Recognition”, Stanford University.

[Miller 2000] Miller, T., E., “Integrating Realistic Human Group Behaviors Into a

Networked 3D Virtual Environment”, September 2000.

[NetByTel] NetByTel, “History of Speech Recognition”,

http://www.netbytel.com/literature/e-gram/technical3.htm

[Nielsen 99] Dr. Nielsen, J., “Will Voice Interfaces Replace Screens”,1999.

[PCMagazine 99] PC Magazine UK, “Speech Recognition Software”, July 1999.

[Pocock, Rosebush 2002] Pocock, L., Rosebush J., “The Computer Animator’s

Technical Handbook”, 2002.

[Seffers 2001] Seffers, G. I., “The Voice of Combat”, Technology Trends August 6,

2001.

[Simpson 99] Dr. Simpson, Charles B., “What Makes Each Human Voice Distinct?”,

1999.

[VRML 97] The Virtual Reality Modeling Language Specification, 1997,

http://www.web3d.org/Specifications/VRML97/

[Zyda 99] Zyda, M., Singhal S., “Networked Virtual Environments, Design and

Implementation”, 1999.

82

http://www.netbytel.com/literature/e-gram/technical3.htm
http://www.web3d.org/Specifications/VRML97/

INITIAL DISTRIBUTION LIST

1. Deniz Kuvvetleri Komutanligi
 Personel Egitim Daire Baskanligi

Bakanliklar, Ankara
 TURKEY

2. Defense Technical Information Center
 Ft. Belvoir, Virginia

3. Dudley Knox Library

Naval Postgraduate School
 Monterey, California

4. Deniz Harp Okulu Komutanligi Kutuphanesi
 Tuzla, Istanbul

TURKEY

5. Michael Zyda
 Chair, MOVES Academic Group

Naval Postgraduate School
 Monterey, California

6. John Hiles

Naval Postgraduate School
Monterey, California

7. Rudy Darken

Naval Postgraduate School
Monterey, California

8. Don Brutzman
 Naval Postgraduate School

Monterey, California

9. Xiaoping Yun
 Naval Postgraduate School

Monterey, California

10. John Falby
Naval Postgraduate School
Monterey, California

83

11. Chris Darken
Naval Postgraduate School
Monterey, California

12. Lynn Pocock
77 Fornelius Ave.
Clifton, New Jersey 07013

84

	INTRODUCTION
	VOICE-INTERFACES BACKGROUND
	B.MOTIVATION
	1.Exemplar: Situation Reports Using Voice Recognition
	2.Entertainment
	3.Virtual Environments (VEs)
	4.E-Commerce
	5.Gun Control

	C.THESIS GOALS
	D.THESIS ORGANIZATION

	II.RELATED WORK
	A.INTRODUCTION
	VIRTUAL REALITY MODELING LANGUAGE (VRML)
	C.EXTENSIBLE 3D (X3D) GRAPHICS SPECIFICATION AND X3D-EDIT AUTHORING TOOL
	D.KINEMATICS
	Forward Kinematics
	Inverse Kinematics

	E. HUMANOID ANIMATION (H-ANIM) WORKING GROUP AND H-ANIM SPECIFICATIONS
	F. HUMANOID MODELS
	1.Nancy
	2.Allen
	Box Man

	G.INTEGRATING VIRTUAL HUMANS INTO NETWORKED VURTUAL ENVIRONMENTS (Net-VEs)
	H. SUMMARY

	III.SPEECH-RECOGNITION TECHNOLOGY
	A.INTRODUCTION
	B.WHAT MAKES EACH HUMAN VOICE DISTINCT?
	C.HISTORY
	D.BASIC TERMS AND CONCEPTS
	1.Phonemes
	Voiced Phonemes
	Unvoiced Phonemes
	Nasal Phonemes

	2.Acoustic Model
	3.Utterance
	4.Pronunciation
	5.Grammar
	Natural Language Commands
	Training
	Speaker Dependence vs. Speaker Independence
	Accuracy

	E.HOW IT WORKS
	F.FACTORS AFFECTING THE ACCURACY
	G.SUMMARY

	IV. THE JAVA SPEECH API
	A.INTRODUCTION
	B.OVERVIEW
	CORE SPEECH TECHNOLOGIES
	Speech Synthesis
	a. Speech-Synthesis Limitations
	b.Speech-Synthesis Assessment

	2.Speech Recognition
	a.Speech-Recognition Limitations
	b.Speech-Recognition Assessment

	3.Speech Engine

	D.JAVA SPEECH GRAMMAR FORMAT (JSGF)
	Definitions
	Grammar Names and Package Names
	Rulenames
	Tokens
	Comments
	Grammar Header
	Grammar Body

	Rule Expansions
	Defining Complex Rules
	Composition and Sequences
	Grouping
	Unary Operators

	E.SUMMARY

	V.IMPLEMENTATION: BUILDING A NETWORKED, VOICE-ACTIVATED HUMANOID ANIMATION
	A.INTRODUCTION
	B.INITIAL LOW-LEVEL SYSTEM STRUCTURE
	C.SYSTEM COMPONENTS
	1.IBM VIAVOICE SDK
	2.Human Models
	3.VRML-Java Communication

	D.DEVELOPMENT PROCESS
	1.Building a Motion Library
	Putting the Avatars and Behaviors Together: The Interchangeable Actors
	Voice Enabling
	Networking
	Providing Available Commands and Feedback

	E.ASSESSMENT OF THE FINAL PRODUCT
	F.SUMMARY

	CONCLUSION AND FUTURE WORK
	A.THESIS CONCLUSIONS
	1.Integration of Speech-Recognition Technology to the Networked Virtual Environments (Net-VEs)
	2.Hybrid Interfaces (VUI + GUI)
	3.Interchangeable Humanoids and Animation Behaviors

	B.RECOMMENDATIONS FOR FUTURE WORK
	Building Simulation of a Scenario or a Game
	Improving Networking
	Expanding the Motion Library
	Composition of Animation Behaviors
	Support for Tactical Applications

	APPENDIX A – ACRONYMS
	APPENDIX B – 3D SCENES AND ANIMATION BEHAVIORS
	APPENDIX C – CD DISTRIBUTION LIST
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

